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Multicore processors
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From http://en.wikipedia.org/wiki/Multi-core_processor



What is OpenMP?

http://openmp.org/wp/

• Application program interface (API) for shared 

memory parallel applications in C, C++, 

Fortran

• OpenMP is not a language
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• OpenMP is not a language

• Compiler directives, runtime library, 

environment variables are available

• An excellent reference for beginners:
https://computing.llnl.gov/tutorials/openMP



Advantages of Open MP

• Very easy to implement

• Lower communication time required in 

comparison to MPI

• Unlike MPI, preserves the sequential code
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• Unlike MPI, preserves the sequential code

• Makes good use of present day multicore

processors



What is a thread?

• A thread carries out a series of instructions

• OpenMP program executes threads in parallel

TASK 1 TASK 2 TASK 3Sequential
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• OpenMP program executes threads in parallel

• There is a master thread in OpenMP with id=0

• New threads can be spawned dynamically and 

later released during the course of a computer 

calculation



Basic concept of OpenMP

TASK 1 TASK 2 TASK 3Sequential
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TASK 1 TASK 2 TASK 3

TASK 2

TASK 2

Parallel section

OpenMP

FORK JOIN



When is parallelization possible?

• Certain degree of independence in the order 

of the operations
DO i=1,n
A(i)=B(i)+C(i)

END DO

x(t t) 2x(t) x(t t) F(t) / m+ ∆ = − − ∆ +

x(t t) x(t t)
v(t)

+ ∆ − − ∆
=
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• It does not matter which order chunks of 

operations are performed

END DO

DO i=1,n
A(i)=B(i)+C(i)

END DO
DO i=1,n
D(i)=B(i)-C(i)

END DO

x(t t) x(t t)
v(t)

2 t

+ ∆ − − ∆
=

∆



Maximum speed-up

1 hour

FORCE 

1 hour
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FORCE 

CALCULATIONS

(9 hours)

Molecular dynamics

FORCE 

CALCULATIONS

(~3 hours)

Parallelized version of Molecular dynamics 

using three threads – best case scenario

Parallelize



How effective is parallelization?

1.1 hour 6.0 hour 0.5 hour 3.6 hour 11.2 hours+ + + =

TASK 1 TASK 2 TASK 3 TASK 4

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

1.1 hour 6.0 hour 0.5 hour 3.6 hour
3.53 hours

1 5 20 3
+ + + =

Speed-up = 3.2 times



How to fix the number of threads?

• Set the OMP_NUM_THREADS environment 

variable

• Use the omp_set_num_threads() library 

bash>>  OMP_NUM_THREADS = 4
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• Use the omp_set_num_threads() library 

function

PROGRAM MAIN

CALL OMP_SET_NUM_THREADS(4)

END PROGRAM MAIN



Main directives in OpenMP

• Control structures – serial vs parallel

• Worksharing constructs – who will get to do 

what

• Sychronization – collecting information from 
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• Sychronization – collecting information from 

the threads

• Data scoping – variable scope



Typical structure of OpenMP code

PROGRAM Hello
……

!$OMP PARALLEL PRIVATE(a,b,c) SHARED(x,y,z)
xxxxx

!$OMP END PARALLEL

Attributes
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END PROGRAM Hello

gfortran –fopenmp –o Hello.x Hello.f90

gfortran –o Hello.x Hello.f90

OpenMP

Sequential



Thread number

• Numbering of thread can be used to identify 

which thread is in operation

THREAD 0

PROGRAM Hello
……

!$OMP PARALLEL PRIVATE(i) SHARED(x,y,z)
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THREAD 1

THREAD 2

!$OMP PARALLEL PRIVATE(i) SHARED(x,y,z)
i=OMP_GET_THREAD_NUM( )
IF (i==0) THEN
WRITE(*,*) “Master says hi”

ELSE
WRITE(*,*) “Slave #”,i

END IF
!$OMP END PARALLEL

END PROGRAM Hello



Work sharing constructs

• DO/FOR construct – for loops

• SECTION construct – divide work into separate 

sections

• SINGLE construct – serialize a section of the 
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• SINGLE construct – serialize a section of the 

code



DO/FOR directive

• DO loop cannot be a DO WHILE loop, or a loop 

without a control

!$OMP DO [clause]
SCHEDULE (type [,chunk]) 
ORDERED
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ORDERED
PRIVATE(list)
FIRSTPRIVATE (list)
LASTPRIVATE (list)
SHARED (list)
REDUCTION (operator | intrinsic : list)
COLLAPSE (n)

do loop
!$OMP END DO [NOWAIT]



DO/FOR directive - example
PROGRAM VEC_ADD_DO
INTEGER, PARAMETER :: N=1000,CHUNKSIZE=100
INTEGER :: CHUNK,I
REAL :: A(N),B(N),C(N)

DO I=1,N
A(I)=REAL(I)
B(I)=A(I)

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

B(I)=A(I)
END DO

!$OMP PARALLEL SHARED (A,B,C,CHUNK) PRIVATE(I)
!$OMP DO SCHEDULE(DYNAMIC,CHUNK)
DO I=1,N
C(I)=A(I)+B(I)

END DO
!$OMP END DO
!$OMP END PARALLEL
END PROGRAM VEC_ADD_DO



DO/FOR directive

• Schedule

– STATIC – loops are divided into pieces of size 

CHUNK; if CHUNK size is not specified then 

iterations are evenly divided
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iterations are evenly divided

– DYNAMIC – dynamic allocation of size CHUNK

– RUNTIME – determined at runtime

– AUTO – Decision is taken by the compiler



SECTIONS directive

• Used whenever iterations are NOT present, 

but work can be distributed among threads

!$OMP SECTIONS [clause]
PRIVATE(list)
FIRSTPRIVATE (list)
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FIRSTPRIVATE (list)
LASTPRIVATE (list)
REDUCTION (operator | intrinsic : list)

!$OMP SECTION
block

!$OMP SECTION
block

!$OMP END SECTIONS [NOWAIT]



SECTIONS directive - example
PROGRAM VEC_ADD_SECTIONS
INTEGER, PARAMETER :: N=1000
INTEGER :: I
REAL :: A(N),B(N),C(N),D(N)

DO I=1,N
A(I)=REAL(I)
B(I)=A(I)

END DO
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!$OMP PARALLEL SHARED (A,B,C,D) PRIVATE(I)
!$OMP SECTIONS
!$OMP SECTION
DO I=1,N
C(I)=A(I)+B(I)

END DO
DO I=1,N
D(I)=A(I)*B(I)

END DO
!$OMP END SECTIONS
!$OMP END PARALLEL
END PROGRAM VEC_ADD_SECTIONS



WORKSHARE directive

• WORKSHARE divides  the execution of a 

structured block into separate units of work

!$OMP WORKSHARE
block

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

• The structure block must only contain

– Array assignments, scalar assignments, FORALL 

statements, WHERE statements

block
!$OMP END WORKSHARE [NOWAIT]



WORKSHARE directive - example

PROGRAM VEC_ADD_WORKSHARE
INTEGER, PARAMETER :: N=1000
REAL :: A(N),B(N),C(N),D(N)

DO I=1,N
A(I)=REAL(I)
B(I)=A(I)
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B(I)=A(I)
END DO

!$OMP PARALLEL SHARED (A,B,C,D)
!$OMP WORKSHARE
C=A+B
D=A*B

!$OMP END WORKSHARE NOWAIT
!$OMP END PARALLEL
END PROGRAM VEC_ADD_WORKSHARE



SINGLE directive

• Used while dealing with sections that are not 

thread safe

!$OMP SINGLE [clause]
PRIVATE(list)
FIRSTPRIVATE (list)
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• Threads that do not execute the enclosed 

code, wait unless a NOWAIT clause is specified

FIRSTPRIVATE (list)
block
!$OMP END SINGLE [NOWAIT]



Data scope and Data sharing

• Most variables are shared by default, since 

memory is shared

• Variables can be shared (e.g., variables 

common to different threads, module 
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common to different threads, module 

variables, common block etc.) or they can be 

private (e.g., do loop, variables used 

independently by threads, etc.)



Data scope and Data sharing

• THREADPRIVATE directive – data to be shared 
between parallel regions

• Other attributes used

– PRIVATE(x) – new object x for each thread
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– SHARED(x) – same object x is shared between threads

– DEFAULT – define default scope, e.g., DEFAULT PRIVATE

– FIRSTPRIVATE(x) – PRIVATE + Initialized

– LASTPRIVATE(x) – PRIVATE + use last value

– REDUCTION(x) – perform reduction on x

– COPYIN



THREADPRIVATE directive

• Each thread gets its copy of the variable, 

which be used by it during execution in 

multiple parallel regions

COMMON /Block1/ a
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COMMON /Block1/ a

!$OMP THREADPRIVATE(/Block1/,x)

!$OMP PARALLEL
!$OMP END PARALLEL 

!$OMP PARALLEL
!$OMP END PARALLEL



PRIVATE(list)

• List of variables is private to each thread

• VERY IMPORTANT: Each of these variables is 

uninitialized in the beginning

• Can be initialized using FIRSTPRIVATE
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• Can be initialized using FIRSTPRIVATE

• Does not persist over multiple parallel regions 

unlike THREADPRIVATE

• Can be used for variables other than those 

from a common block



SHARED(list)

• List of variables is shared between threads

• VERY IMPORTANT: Shared variable exists on 

only one memory location, the thread would 

read from and write to the address
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read from and write to the address

• Use BARRIER, CRITICAL constructs to ensure 

synchronization



FIRSTPRIVATE and LASTPRIVATE

• FIRSTPRIVATE(list) Combines the PRIVATE 

clause with initialization for a list of variables 

• LASTPRIVATE(list) copies the value of the list of 

PRIVATE variables to the original variable 
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PRIVATE variables to the original variable 

object

• The value of the private variable from the 

thread, which performs the last DO loop 

iteration or the last section, gets copied



REDUCTION
PROGRAM DOTPRODUCT
INTEGER, PARAMETER:: N=1000, CHUNKSIZE=10
INTEGER :: CHUNK,I
REAL :: A(N),B(N),RESULT

DO i=1,N
A(I)=REAL(I)
B(I)=SIN(A(I))

END DO
Equal sized blocks
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END DO
RESULT=0.
CHUNK=CHUNKSIZE

!$OMP PARALLEL
!$OMP DO DEFAULT(SHARED) PRIVATE(I) SCHEDULE(STATIC,CHUNK)
!$OMP& REDUCTION(+:RESULT)
DO I=1,N
RESULT=RESULT+A(I)*B(I)

END DO
!$OMP END DO
!$OMP END PARALLEL
END PROGRAM DOTPRODUCT



REDUCTION(operator|list)

• Perform a reduction on the variables in the list

• Private copy of the variable in the list are 

created for each thread

• Finally result is written to global shared 
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• Finally result is written to global shared 

variable

• Variables on which reduction is performed 

should be scalar and shared



COPYIN

• Obtains the value of a variable x declared 

under THREADPRIVATE

• The value of x for all threads will be assigned 

the same value
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the same value

• Master thread is used as copy source



Race condition

• When two threads compete with each other 

to influence the output

• Example 1 – writing output to a file
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Xxxx ….

Yyyy .…
THREAD 1

THREAD 2



Race condition

• When two threads compete with each other 

to influence the output

• Example 2 – Data corruption

– Read x_sum
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– Read x_sum

– Update according to

– Return value of x_sum

sum sum
x x x(i)= +



Synchronization constructs

• MASTER directive

• CRITICAL directive

• BARRIER directive

• TASKWAIT directive
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• TASKWAIT directive

• ATOMIC directive

• FLUSH directive

• ORDERED directive



MASTER directive

• Only master thread can execute this region

• All other threads can skip this region

!$OMP MASTER
block
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block
!$OMP END MASTER



CRITICAL directive

• The region can be executed by only one 

thread at a time

INTEGER :: x_sum
x_sum=0
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x_sum=0
!$OMP PARALLEL SHARED(x)
!$OMP CRITICAL
x_sum=x_sum+1

!$OMP END CRITICAL
!$OMP END PARALLEL



BARRIER directive

• This can synchronize all threads in the team

• When a BARRIER is reached, the thread will 

wait till all threads reach the barrier
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!$OMP BARRIER
block

!$OMP END BARRIER



ATOMIC directive

• Specific memory location must be updated 

atomically, rather than letting multiple threads 

to write 
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!$OMP ATOMIC
statement



FLUSH directive

• The thread-visible variables need to be written 

back to memory
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!$OMP FLUSH(list)



Runtime routines

• OMP_SET_NUM_THREADS( )

• OMP_GET_NUM_THREADS( )

• OMP_GET_MAX_THREADS( )

• OMP_GET_THREAD_NUM( )

• OMP_SET_DYNAMIC( )
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• OMP_SET_DYNAMIC( )

• OMP_GET_DYNAMIC( )

• OMP_SET_NESTED( )

• OMP_GET_WTIME( )

• Other routines …



OMP_GET_WTIME( )

• Obtain the OpenMP walk clock time

• Returns the number of seconds elapsed (per 

thread), as a double precision floating point, 

since some time in the past
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since some time in the past

Time0=OMP_GET_WTIME( )
$OMP DO SCHEDULE (DYNAMIC,CHUNK)
xxxxx

$OMP END DO
Time1=OMP_GET_WTIME( )



Some important issues in OpenMP

• Total CPU time over all threads created can 
exceed the sequential time

• Some other issues that are important

– Communication

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

– Communication

– Race conditions and synchronization

– Load balancing

– Scalability

– Portability

– Problem size (memory related issues)


