
An introduction to

OpenMP (Open Multi-Processing)

Dr. Abhijit ChatterjeeDr. Abhijit Chatterjee

Department of Chemical Engineering

IIT Kanpur

November 12, 2010

Multicore processors

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

From http://en.wikipedia.org/wiki/Multi-core_processor

What is OpenMP?

http://openmp.org/wp/

• Application program interface (API) for shared

memory parallel applications in C, C++,

Fortran

• OpenMP is not a language

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

• OpenMP is not a language

• Compiler directives, runtime library,

environment variables are available

• An excellent reference for beginners:
https://computing.llnl.gov/tutorials/openMP

Advantages of Open MP

• Very easy to implement

• Lower communication time required in

comparison to MPI

• Unlike MPI, preserves the sequential code

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

• Unlike MPI, preserves the sequential code

• Makes good use of present day multicore

processors

What is a thread?

• A thread carries out a series of instructions

• OpenMP program executes threads in parallel

TASK 1 TASK 2 TASK 3Sequential

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

• OpenMP program executes threads in parallel

• There is a master thread in OpenMP with id=0

• New threads can be spawned dynamically and

later released during the course of a computer

calculation

Basic concept of OpenMP

TASK 1 TASK 2 TASK 3Sequential

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

TASK 1 TASK 2 TASK 3

TASK 2

TASK 2

Parallel section

OpenMP

FORK JOIN

When is parallelization possible?

• Certain degree of independence in the order

of the operations
DO i=1,n
A(i)=B(i)+C(i)

END DO

x(t t) 2x(t) x(t t) F(t) / m+ ∆ = − − ∆ +

x(t t) x(t t)
v(t)

+ ∆ − − ∆
=

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

• It does not matter which order chunks of

operations are performed

END DO

DO i=1,n
A(i)=B(i)+C(i)

END DO
DO i=1,n
D(i)=B(i)-C(i)

END DO

x(t t) x(t t)
v(t)

2 t

+ ∆ − − ∆
=

∆

Maximum speed-up

1 hour

FORCE

1 hour

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

FORCE

CALCULATIONS

(9 hours)

Molecular dynamics

FORCE

CALCULATIONS

(~3 hours)

Parallelized version of Molecular dynamics

using three threads – best case scenario

Parallelize

How effective is parallelization?

1.1 hour 6.0 hour 0.5 hour 3.6 hour 11.2 hours+ + + =

TASK 1 TASK 2 TASK 3 TASK 4

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

1.1 hour 6.0 hour 0.5 hour 3.6 hour
3.53 hours

1 5 20 3
+ + + =

Speed-up = 3.2 times

How to fix the number of threads?

• Set the OMP_NUM_THREADS environment

variable

• Use the omp_set_num_threads() library

bash>> OMP_NUM_THREADS = 4

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

• Use the omp_set_num_threads() library

function

PROGRAM MAIN

CALL OMP_SET_NUM_THREADS(4)

END PROGRAM MAIN

Main directives in OpenMP

• Control structures – serial vs parallel

• Worksharing constructs – who will get to do

what

• Sychronization – collecting information from

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

• Sychronization – collecting information from

the threads

• Data scoping – variable scope

Typical structure of OpenMP code

PROGRAM Hello
……

!$OMP PARALLEL PRIVATE(a,b,c) SHARED(x,y,z)
xxxxx

!$OMP END PARALLEL

Attributes

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

END PROGRAM Hello

gfortran –fopenmp –o Hello.x Hello.f90

gfortran –o Hello.x Hello.f90

OpenMP

Sequential

Thread number

• Numbering of thread can be used to identify

which thread is in operation

THREAD 0

PROGRAM Hello
……

!$OMP PARALLEL PRIVATE(i) SHARED(x,y,z)

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

THREAD 1

THREAD 2

!$OMP PARALLEL PRIVATE(i) SHARED(x,y,z)
i=OMP_GET_THREAD_NUM()
IF (i==0) THEN
WRITE(*,*) “Master says hi”

ELSE
WRITE(*,*) “Slave #”,i

END IF
!$OMP END PARALLEL

END PROGRAM Hello

Work sharing constructs

• DO/FOR construct – for loops

• SECTION construct – divide work into separate

sections

• SINGLE construct – serialize a section of the

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

• SINGLE construct – serialize a section of the

code

DO/FOR directive

• DO loop cannot be a DO WHILE loop, or a loop

without a control

!$OMP DO [clause]
SCHEDULE (type [,chunk])
ORDERED

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

ORDERED
PRIVATE(list)
FIRSTPRIVATE (list)
LASTPRIVATE (list)
SHARED (list)
REDUCTION (operator | intrinsic : list)
COLLAPSE (n)

do loop
!$OMP END DO [NOWAIT]

DO/FOR directive - example
PROGRAM VEC_ADD_DO
INTEGER, PARAMETER :: N=1000,CHUNKSIZE=100
INTEGER :: CHUNK,I
REAL :: A(N),B(N),C(N)

DO I=1,N
A(I)=REAL(I)
B(I)=A(I)

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

B(I)=A(I)
END DO

!$OMP PARALLEL SHARED (A,B,C,CHUNK) PRIVATE(I)
!$OMP DO SCHEDULE(DYNAMIC,CHUNK)
DO I=1,N
C(I)=A(I)+B(I)

END DO
!$OMP END DO
!$OMP END PARALLEL
END PROGRAM VEC_ADD_DO

DO/FOR directive

• Schedule

– STATIC – loops are divided into pieces of size

CHUNK; if CHUNK size is not specified then

iterations are evenly divided

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

iterations are evenly divided

– DYNAMIC – dynamic allocation of size CHUNK

– RUNTIME – determined at runtime

– AUTO – Decision is taken by the compiler

SECTIONS directive

• Used whenever iterations are NOT present,

but work can be distributed among threads

!$OMP SECTIONS [clause]
PRIVATE(list)
FIRSTPRIVATE (list)

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

FIRSTPRIVATE (list)
LASTPRIVATE (list)
REDUCTION (operator | intrinsic : list)

!$OMP SECTION
block

!$OMP SECTION
block

!$OMP END SECTIONS [NOWAIT]

SECTIONS directive - example
PROGRAM VEC_ADD_SECTIONS
INTEGER, PARAMETER :: N=1000
INTEGER :: I
REAL :: A(N),B(N),C(N),D(N)

DO I=1,N
A(I)=REAL(I)
B(I)=A(I)

END DO

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

!$OMP PARALLEL SHARED (A,B,C,D) PRIVATE(I)
!$OMP SECTIONS
!$OMP SECTION
DO I=1,N
C(I)=A(I)+B(I)

END DO
DO I=1,N
D(I)=A(I)*B(I)

END DO
!$OMP END SECTIONS
!$OMP END PARALLEL
END PROGRAM VEC_ADD_SECTIONS

WORKSHARE directive

• WORKSHARE divides the execution of a

structured block into separate units of work

!$OMP WORKSHARE
block

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

• The structure block must only contain

– Array assignments, scalar assignments, FORALL

statements, WHERE statements

block
!$OMP END WORKSHARE [NOWAIT]

WORKSHARE directive - example

PROGRAM VEC_ADD_WORKSHARE
INTEGER, PARAMETER :: N=1000
REAL :: A(N),B(N),C(N),D(N)

DO I=1,N
A(I)=REAL(I)
B(I)=A(I)

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

B(I)=A(I)
END DO

!$OMP PARALLEL SHARED (A,B,C,D)
!$OMP WORKSHARE
C=A+B
D=A*B

!$OMP END WORKSHARE NOWAIT
!$OMP END PARALLEL
END PROGRAM VEC_ADD_WORKSHARE

SINGLE directive

• Used while dealing with sections that are not

thread safe

!$OMP SINGLE [clause]
PRIVATE(list)
FIRSTPRIVATE (list)

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

• Threads that do not execute the enclosed

code, wait unless a NOWAIT clause is specified

FIRSTPRIVATE (list)
block
!$OMP END SINGLE [NOWAIT]

Data scope and Data sharing

• Most variables are shared by default, since

memory is shared

• Variables can be shared (e.g., variables

common to different threads, module

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

common to different threads, module

variables, common block etc.) or they can be

private (e.g., do loop, variables used

independently by threads, etc.)

Data scope and Data sharing

• THREADPRIVATE directive – data to be shared
between parallel regions

• Other attributes used

– PRIVATE(x) – new object x for each thread

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

– SHARED(x) – same object x is shared between threads

– DEFAULT – define default scope, e.g., DEFAULT PRIVATE

– FIRSTPRIVATE(x) – PRIVATE + Initialized

– LASTPRIVATE(x) – PRIVATE + use last value

– REDUCTION(x) – perform reduction on x

– COPYIN

THREADPRIVATE directive

• Each thread gets its copy of the variable,

which be used by it during execution in

multiple parallel regions

COMMON /Block1/ a

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

COMMON /Block1/ a

!$OMP THREADPRIVATE(/Block1/,x)

!$OMP PARALLEL
!$OMP END PARALLEL

!$OMP PARALLEL
!$OMP END PARALLEL

PRIVATE(list)

• List of variables is private to each thread

• VERY IMPORTANT: Each of these variables is

uninitialized in the beginning

• Can be initialized using FIRSTPRIVATE

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

• Can be initialized using FIRSTPRIVATE

• Does not persist over multiple parallel regions

unlike THREADPRIVATE

• Can be used for variables other than those

from a common block

SHARED(list)

• List of variables is shared between threads

• VERY IMPORTANT: Shared variable exists on

only one memory location, the thread would

read from and write to the address

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

read from and write to the address

• Use BARRIER, CRITICAL constructs to ensure

synchronization

FIRSTPRIVATE and LASTPRIVATE

• FIRSTPRIVATE(list) Combines the PRIVATE

clause with initialization for a list of variables

• LASTPRIVATE(list) copies the value of the list of

PRIVATE variables to the original variable

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

PRIVATE variables to the original variable

object

• The value of the private variable from the

thread, which performs the last DO loop

iteration or the last section, gets copied

REDUCTION
PROGRAM DOTPRODUCT
INTEGER, PARAMETER:: N=1000, CHUNKSIZE=10
INTEGER :: CHUNK,I
REAL :: A(N),B(N),RESULT

DO i=1,N
A(I)=REAL(I)
B(I)=SIN(A(I))

END DO
Equal sized blocks

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

END DO
RESULT=0.
CHUNK=CHUNKSIZE

!$OMP PARALLEL
!$OMP DO DEFAULT(SHARED) PRIVATE(I) SCHEDULE(STATIC,CHUNK)
!$OMP& REDUCTION(+:RESULT)
DO I=1,N
RESULT=RESULT+A(I)*B(I)

END DO
!$OMP END DO
!$OMP END PARALLEL
END PROGRAM DOTPRODUCT

REDUCTION(operator|list)

• Perform a reduction on the variables in the list

• Private copy of the variable in the list are

created for each thread

• Finally result is written to global shared

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

• Finally result is written to global shared

variable

• Variables on which reduction is performed

should be scalar and shared

COPYIN

• Obtains the value of a variable x declared

under THREADPRIVATE

• The value of x for all threads will be assigned

the same value

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

the same value

• Master thread is used as copy source

Race condition

• When two threads compete with each other

to influence the output

• Example 1 – writing output to a file

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

Xxxx ….

Yyyy .…
THREAD 1

THREAD 2

Race condition

• When two threads compete with each other

to influence the output

• Example 2 – Data corruption

– Read x_sum

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

– Read x_sum

– Update according to

– Return value of x_sum

sum sum
x x x(i)= +

Synchronization constructs

• MASTER directive

• CRITICAL directive

• BARRIER directive

• TASKWAIT directive

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

• TASKWAIT directive

• ATOMIC directive

• FLUSH directive

• ORDERED directive

MASTER directive

• Only master thread can execute this region

• All other threads can skip this region

!$OMP MASTER
block

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

block
!$OMP END MASTER

CRITICAL directive

• The region can be executed by only one

thread at a time

INTEGER :: x_sum
x_sum=0

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

x_sum=0
!$OMP PARALLEL SHARED(x)
!$OMP CRITICAL
x_sum=x_sum+1

!$OMP END CRITICAL
!$OMP END PARALLEL

BARRIER directive

• This can synchronize all threads in the team

• When a BARRIER is reached, the thread will

wait till all threads reach the barrier

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

!$OMP BARRIER
block

!$OMP END BARRIER

ATOMIC directive

• Specific memory location must be updated

atomically, rather than letting multiple threads

to write

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

!$OMP ATOMIC
statement

FLUSH directive

• The thread-visible variables need to be written

back to memory

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

!$OMP FLUSH(list)

Runtime routines

• OMP_SET_NUM_THREADS()

• OMP_GET_NUM_THREADS()

• OMP_GET_MAX_THREADS()

• OMP_GET_THREAD_NUM()

• OMP_SET_DYNAMIC()

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

• OMP_SET_DYNAMIC()

• OMP_GET_DYNAMIC()

• OMP_SET_NESTED()

• OMP_GET_WTIME()

• Other routines …

OMP_GET_WTIME()

• Obtain the OpenMP walk clock time

• Returns the number of seconds elapsed (per

thread), as a double precision floating point,

since some time in the past

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

since some time in the past

Time0=OMP_GET_WTIME()
$OMP DO SCHEDULE (DYNAMIC,CHUNK)
xxxxx

$OMP END DO
Time1=OMP_GET_WTIME()

Some important issues in OpenMP

• Total CPU time over all threads created can
exceed the sequential time

• Some other issues that are important

– Communication

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

– Communication

– Race conditions and synchronization

– Load balancing

– Scalability

– Portability

– Problem size (memory related issues)

