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Molecular dynamics is expensive

 Example of adatom diffusion




Multiscale modeling
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Applications of kinetic Monte Carlo

e Radiation damage in materials

e Surface science

* Thin film and crystal growth

* Metals and semiconductor alloys

* Adsorption/desorption phenomena
e Catalysis

* Biological systems




How does KMC compare to MD?

e MD can reach 100 ns MD time in 1 day on a
standard desktop computer

* |n contrast, KMC can reach several
milliseconds with the same CPU effort

« KMC dynamics is as accurate as the MD
dynamics as long as certain assumptions made
in KMC are valid




Discrete states and atomic processes

When will a process occur?
Whidh process|will be selected?
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Assumptions in KMC

e Atomic process is Markov process

* Atomic processes are independent of each
other

e Discrete number of states accessible from the
current state |

* The list of processes from each state of the
system is known

* Probability of selecting more than one process
at the same time is zero




Master equation

e Discrete time version
T (n+1)—m (n) :Zpijﬂ:i(n)—Zpﬁnj(n)
i;j i;j
e Continuous time version

dr.
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Probability of escape

 The rate of a process from state i to j is given
by E,

ki =V, exp(— kBT)

* First escape from state i to j obeys

P(t,1 — j)dt =k; exp(=k; ., t)dt
* First escape from state |
P(t’l %)dt = ki,total eXp(_ki,totalt)dt

(see Gillespie, 76 for derivation)




Features of the probablllty density
function

* Will an escape occur?

ki,total eXp(_ki,totalt)dt — 1

0

t
 What is the average time for one escape?

t)dt =———

1,total

jtP(t i —)dt —jk texp(—k,

1,total 1,total




When does a process get selected?

P(t,1—>)dt=k.  exp(-k.  t)dt

1,total 1,total

* |t can be shown that the first escape time can

be sampled as
- In(1/¢,)

K

t

1,total




Which process is selected?

 The probability of selecting process from i to j
1S

P( ) kij
i— )=
J k

1,total




All KMC algorith
dynamics

ms solve the same

* Rejection-based

— Dynamic Monte Carlo method (Fichthorn, 91)

— Null-event Monte

* Rejection free
— Direct method (Gi
— N-fold or BKL met
— First reaction met

Carlo method (Vlachos, 98)

lespie, 76)
hod (Bortz, Kalos, Lebowitz, 75)

nod (Gillespie, 76)

— Next reaction method (Gibson, 00)
— Stochastic simulation algorithm (Gillespie, 76)




Direct method

Rather easy to implement

Select one process at a time (i.e., algorithm is
rejection free) and advance the time

NOYUTD WIN —

. Obtain the initial conditions
. Find the processes and their rates from the current state i

Find which process will be selected and when the process will occur
Move the final state of the selected process

Advance the time

New process is denoted i

Go to step 2




Which process gets selected?

* Length of the bars below is proportional to the
value of the rate constant

[ | B ] k;
. P1—)) =
* Find the process K otar
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=1
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Time iIncrement

* Each time a process is selected increment time
as

In(1/&,)

1,total

t<t+




Bond-counting method
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Bond-counting method

E
k. 7\/ exp (— - aflj\
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Lattice gas model
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Lattice gas model
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Implementation

o

DiffusionNorth(Site 1)

DiffusionSouth(Site 1)
K(G) = Rate vector = DiffusionEast(Site 1)

DiffusionWest(Site 1)

M=

L= ln(l / §2) ifka,b < ktotalgl S i
b=I

ktotal a=1 a=1

o
’i

~

k

K _sum

=

a,b
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Local updates
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A more efficient implementation




Binary tree search

Gibson and Bruck, 00
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N-fold or BKL method

Class Number of Process Total rate | Cumulative sum List
number nelghbors Rate

RIN1 RIN1
2 1 R2 N2 R2N2 RIN1+R2N2
3 2 R3 N3 R3N3 RIN1+R2N2+R3N3
4 3 R4 N4 R4N4

BKL, 1975
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Challenges with KMC

Cost of KMC can be high
One process at a time

Time scales accessible to KMC can be small in
many situations

Memory cost
Other challenges




Recent advances in KMC

e Parallelization

e Spatial coarse-graining techniques
 Temporal coarse-graining techniques
e Spatio-temporal coarse-graining

* Time scale separation problems

* Other advances




Parallelization of KMC
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Parallelization of KMC

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur



Parallelization of KMC
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Spatial coarse-graining

Adsorption
Occupancy vector G

IM.A. Katsoulakis and D.G. Vlachos, JCP (2003)
2M.A. Katsoulakis, A.J. Majda, and D.G. Vlachos,
PNAS (2003), JCompP (2003)




Features of spatial coarse-graining

e Adsorption, desorption, reaction, diffusion can

be modelled -
Ny <M,y —1 Np <M +1

e Spatial resolution is lost

* Obtain in terms of coarse-grained variables
— Rates
— Transition probabilities
— Energetics




Correlations

 Mean-field approximation

* Quasi-chemical approximation

e Cluster expansion

* Numerical methods




Spatial coarse-graining
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Adaptive spatial coarse-graining

Chatterjee et al, 04
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A posteriori error estimate
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A posteriori error estimate

Poe(
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Temporal coarse-graining

* Poisson tau leap

=

Pop(kjia®) = —(0)" £

)’ B

Gillespie, 01 §

e Binomial tau leap
() E s

. T . n ! a.T a.T
F%D(IH;Igé__fnng):: n!(ncﬁﬁxn)![kd) ] [1 kd) ]
max j max j max max
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Temporal coarse-graining

\ Conventional MC
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Spatio-temporal coarse-graining

* Apply tau leap method to spatially coarse-
grained cells

Chatterjee et al, 06




Time scale separation problem

 Adatom detachment from a step is a slow
process

* Probability of selecting a process is
proportional to the rate




Methods for addressing time scale
Separation

Net-event KMC (Vlachos 96, Chatterjee et al, 05)
Probability-weighted method (Resat 01)

Novotny method (Novotny, 95, Puchala et al, 10)
Singular perturbation methods (Chatterjee, 06)
Fuzzy superbasin KMC method (Chatterjee et al, 10)




For more information

e Chatterjee, Vlachos, An overview of spatial
microscopic and accelerated kinetic Monte Carlo

methods, Journal of Computer-Aided Materials
Design, 2007




