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Molecular dynamics is expensive

• Example of adatom diffusion
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Multiscale modeling

LENGTH

Continuum models
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TIME

Molecular 

dynamics

Kinetic Monte Carlo

1 ns – 1 µs 1 ms - 1s

1 micron

100 nm

10 nm

0.1 ps



Applications of kinetic Monte Carlo

• Radiation damage in materials

• Surface science

• Thin film and crystal growth

• Metals and semiconductor alloys
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• Metals and semiconductor alloys

• Adsorption/desorption phenomena

• Catalysis

• Biological systems

• …



How does KMC compare to MD?

• MD can reach 100 ns MD time in 1 day on a 

standard desktop computer

• In contrast, KMC can reach several 

milliseconds with the same CPU effort
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milliseconds with the same CPU effort

• KMC dynamics is as accurate as the MD 

dynamics as long as certain assumptions made 

in KMC are valid



Discrete states and atomic processes

When will a process occur?

Which process will be selected?
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When will a process occur?

Which process will be selected?



Assumptions in KMC

• Atomic process is Markov process

• Atomic processes are independent of each 
other

• Discrete number of states accessible from the 
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• Discrete number of states accessible from the 
current state i

• The list of processes from each state of the 
system is known

• Probability of selecting more than one process 
at the same time is zero



Master equation

• Discrete time version

• Continuous time version

j j ij i ji j

i i
i j i j

(n 1) (n) p (n) p (n)

≠ ≠

π + − π = π − π∑ ∑
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• Continuous time version

j

ij i ji j

i i
i j i j

d
p (n) p (n)

dt
≠ ≠

π
= π − π∑ ∑

ijp P(t, i j) P(t)P(i j)≡ → = →



Probability of escape

• The rate of a process from state i to j is given 

by

• First escape from state i to j obeys

ij

ij ij

B

E
k exp

k T

 
= ν − 

 
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• First escape from state i to j obeys

• First escape from state i

ij i,totalP(t, i j)dt k exp( k t)dt→ = −

i,total i,totalP(t, i )dt k exp( k t)dt→ = −

(see Gillespie, 76 for derivation)



Features of the probability density 

function

• Will an escape occur?

• What is the average time for one escape?

i,total i,total

0

k exp( k t)dt 1

∞

− =∫
p

t
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• What is the average time for one escape?

i,total i,total

i,total0 0

1
tP(t, i )dt k t exp( k t)dt

k

∞ ∞

→ = − =∫ ∫

t



When does a process get selected?

• It can be shown that the first escape time can 

be sampled as

ln(1/ )ξ

i,total i,totalP(t, i )dt k exp( k t)dt→ = −
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2

i,total

ln(1/ )
t

k

ξ
=



Which process is selected?

• The probability of selecting process from i to j 

is

ijk
→ =
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ij

i,total

k
P(i j)

k
→ =



All KMC algorithms solve the same 

dynamics

• Rejection-based

– Dynamic Monte Carlo method (Fichthorn, 91)

– Null-event Monte Carlo method (Vlachos, 98)

• Rejection free
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• Rejection free

– Direct method (Gillespie, 76)

– N-fold or BKL method (Bortz, Kalos, Lebowitz, 75)

– First reaction method (Gillespie, 76)

– Next reaction method (Gibson, 00)

– Stochastic simulation algorithm (Gillespie, 76)



Direct method

• Rather easy to implement

• Select one process at a time (i.e., algorithm is 

rejection free) and advance the time
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1. Obtain the initial conditions
2. Find the processes and their rates from the current state i
3. Find which process will be selected and when the process will occur
4. Move the final state of the selected process
5. Advance the time
6. New process is denoted i
7. Go to step 2



Which process gets selected?

• Length of the bars below is proportional to the 

value of the rate constant

• Find the process

ijk
P(i j)

k
→ =
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• Find the process

• Selection criterion

i,total 1k ξ

J 1 J

ij i,total 1 ij

j 1 j 1

k k k
−

= =

< ξ ≤∑ ∑

i,total

P(i j)
k

→ =



Time increment

• Each time a process is selected increment time 

as

2ln(1/ )
t t

k

ξ
← +
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i,totalk



Bond-counting method

ab
ab ab

B

E
k exp

k T

 
= ν − 

 
a b
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Bond-counting method

ab
ab

B

E
k exp

k T

 
= ν − 

 
a b 11 13 110 10 s−ν = −
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ab a bE f (n ,n )=

ab aE Jn=

ab
ab a

B

E
k exp

k T

 
= ν − σ 

  a

0,unoccupied

1, occupied


σ = 





Lattice gas model

ab
ab

B

E
k exp

k T

 
= ν − 

 
a b
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Lattice gas model
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Implementation

DiffusionNorth(Site 1)

DiffusionSouth(Site 1)

DiffusionEast(Site 1)

DiffusionWest(Site 1)

DiffusionNorth(Site 2)

DiffusionSouth(Site 2)

K(σ) = Rate vector = K_sum
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DiffusionSouth(Site 2)

DiffusionEast(Site 2)

DiffusionWest(Site 2)

…

4nx1

2

total

ln(1/ )
t

k

ξ
=

A B 1 A B

a,b total 1 a,b

a 1 b 1 a 1 b 1

k k k
−

= = = =

< ξ ≤∑∑ ∑∑



Local updates
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A more efficient implementation
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Binary tree search

Gibson and Bruck, 00
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N-fold or BKL method

Class 

number

Number of 

neighbors

Process 

Rate

# sites Total rate Cumulative sum List

1 0 R1 N1 R1N1 R1N1 …

2 1 R2 N2 R2N2 R1N1+R2N2

3 2 R3 N3 R3N3 R1N1+R2N2+R3N3
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4 3 R4 N4 R4N4 …

BKL, 1975



Challenges with KMC

• Cost of KMC can be high

• One process at a time

• Time scales accessible to KMC can be small in 

many situations
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many situations

• Memory cost

• Other challenges



Recent advances in KMC

• Parallelization

• Spatial coarse-graining techniques

• Temporal coarse-graining techniques

• Spatio-temporal coarse-graining
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• Spatio-temporal coarse-graining

• Time scale separation problems

• Other advances



Parallelization of KMC
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Amar, 05; Fichthorn, 07



Parallelization of KMC
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Amar, 05; Fichthorn, 07



Parallelization of KMC

A

A

A

AB

B

B

B

Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

A

A

A

A

B

B B

B

Amar, 05; Fichthorn, 07



Spatial coarse-graining

Microscopic latticeMicroscopic lattice

Diffusion
Desorption

Adsorption

Lattice sites
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the  
red x still appears, you may have to delete the image and then insert it again.

Lattice sites

Diffusion
Desorption

Adsorption

Diffusion
Desorption

Adsorption

Lattice sites
AdsorptionAdsorption

Occupancy vector σ
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Lattice sitesLattice sitesLattice sites

Coarse latticeCoarse lattice

Diffusion
Desorption

Adsorption

Coarse cells
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file  
again. If the red x still appears, you may have to delete the image and then insert it again.

Coarse cells

Diffusion
Desorption

Adsorption

Coarse cells
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file  
again. If the red x still appears, you may have to delete the image and then insert it again.

Coarse cells

1M.A. Katsoulakis and D.G. Vlachos, JCP (2003)
2M.A. Katsoulakis, A.J. Majda, and D.G. Vlachos, 

PNAS (2003), JCompP (2003)
3A. Chatterjee, M.A. Katsoulakis and D.G. Vlachos, JCP (2004)
4A. Chatterjee and D.G. Vlachos, JCompP (2006) 

Coarse grained occupancy vector− η



Features of spatial coarse-graining

• Adsorption, desorption, reaction, diffusion can 

be modelled

• Spatial resolution is lost

B B 1η ← η +
A A 1η ← η −

A B
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• Spatial resolution is lost

• Obtain in terms of coarse-grained variables

– Rates

– Transition probabilities

– Energetics



Correlations

• Mean-field approximation

• Quasi-chemical approximation
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• Cluster expansion

• Numerical methods



Spatial coarse-graining
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Adaptive spatial coarse-graining

Chatterjee et al, 04
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Microscopic lattice

Uniform coarse lattice

Adaptive lattice

Cluster

Catalyst surface



A posteriori error estimate

micro1 H /kT
micro micro microZ e P ( )− −µ = σ CG1 H /kT

CG CG CGZ e P ( )− −µ = η

3
1 1

1 1
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10

0 0

0

MICROSCOPIC (4 states)
COARSE-GRAINED (1 state)
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Microscopic lattice

Uniform coarse lattice

Adaptive lattice

Cluster

Catalyst surface

CG

H/kT
micro

cell

P ( )
R H log

e P ( )−∆

η
= ∆ +

σ∑
micro CGH H H∆ = −

Chatterjee et al, 05

Katsoulakis et al, 07 



A posteriori error estimate

CG
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micro

cell

P ( )
R H log

e P ( )−∆

η
= ∆ +

σ∑

micro CGH H H∆ = −
( ) Upper bound( H)Λ η = ∆

R c ( )≤ Λ η
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Microscopic lattice

Uniform coarse lattice

Adaptive lattice

Cluster

Catalyst surface
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Temporal coarse-graining

• Poisson tau leap ∆tSSA
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• Binomial tau leap
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Temporal coarse-graining
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Spatio-temporal coarse-graining

• Apply tau leap method to spatially coarse-

grained cells

Desorption

Adsorption

Desorption

Adsorption
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Diffusion
Desorption

Coarse cells
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file  
again. If the red x still appears, you may have to delete the image and then insert it again.

Coarse cells

Diffusion
Desorption

Coarse cells
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file  
again. If the red x still appears, you may have to delete the image and then insert it again.

Coarse cells

Chatterjee et al, 06



Time scale separation problem

• Adatom detachment from a step is a slow 

process
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• Probability of selecting a process is 

proportional to the rate



Methods for addressing time scale 

separation

• Net-event KMC (Vlachos 96, Chatterjee et al, 05)

• Probability-weighted method (Resat 01)

• Novotny method (Novotny, 95, Puchala et al, 10)

• Singular perturbation methods (Chatterjee, 06)
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• Singular perturbation methods (Chatterjee, 06)

• Fuzzy superbasin KMC method (Chatterjee et al , 10)



For more information

• Chatterjee, Vlachos, An overview of spatial 

microscopic and accelerated kinetic Monte Carlo 

methods, Journal of Computer-Aided Materials 

Design, 2007 
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