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Basic methods:
M l l d i G t fi ti f d i l l tiMolecular dynamics: Generate configurations from dynamical evolution 

of atoms

Monte Carlo: Generate configurations using random numbersMonte Carlo:              Generate configurations using random numbers

Molecular Dynamics

 How do you get V? How do you get V?
Construct Global potential energy surface from QM
calculations. If 10 points are used along each degree of
freedom  Total number of calculation would be 103N!freedom  Total number of calculation would be ~ 103N!



Reduction of dimensionality
Write the full many-body potential in the following form 

The one-body term can be set to zero. Ignore     and higher order 3y g g
terms. 

3

= Pair interaction potential. Find it from quantum electronic          
structure calculations.

2

…Empirical pair potentialeffective
22For better results,



Pair Potential Approach
 Solves dimensionality bottleneck problem in constructing the global

potential energy surface.
 But But

1. Fails to describe processes where electronic degrees of freedom play
active roles.

2. Same pair potential is used in all thermodynamic conditions (usually
not accurate)

3 Cooperative or many-body effects can be important3. Cooperative or many body effects can be important
 Systems where these are not issues Use empirical pair potentials

(MM) => Classical simulations

Empirical Force 
Fields



 Ignores electronic degrees of freedom
 Calculates energy as a function of nuclear positions only
 Many of the molecular force fields in use today can be interpreted in 

terms of a relatively simple five-component picture of the intra and 
i t l l i t ti

 Calculates energy as a function of nuclear positions only

V( rN )  = 
Bond stretching + Bond bending + Bond rotation (torsion)

inter-molecular interactions.

Bond stretching  +  Bond bending  +  Bond rotation (torsion)    

+  Non-bonded interactions 
Electrostatic van der Waals 

Ref. A. R. Leach, Molecular
Modelling Addison WesleyModelling, Addison Wesley 
Longman (1998)



Ab initio Molecular Simulations
 Empirical pair potentials

1. Fail to describe processes where electronic degrees of freedom play
active rolesactive roles.

2. Same pair potentials are used in all thermodynamic conditions
(usually not accurate)

3. Cooperative or many-body effects can be important

 Systems where these are significant issues calculate the full Systems where these are significant issues, calculate the full-
many-body potential from quantum mechanical calculation by
considering the system at the level of electrons, protons, neutrons
(QM).

Ab i iti i l ti > 105 ti iAb initio simulations => 105 times more expensive
computationally



Structure of current lecture

QM (dynamical perspective)

 Molecular dynamics under quantum many body potential

Q ( y p p )

 Ehrenfest molecular dynamics

 Born-Oppenheimer molecular dynamicspp y

 Car-Parrinello molecular dynamics

 Quantum many-body potential is obtained from quantum Quantum many body potential is obtained from quantum
electronic structure calculations
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Unifying QM with molecular dynamics

Say, RI = nuclear coordinates
r = electronic coordinate

y g Q y
Ref. D. Marx and J. Hutter, Ab Initio
Molecular Dynamics, Cambridge Univri = electronic coordinate 

The Hamiltonian Operator,

y g
Press, 2009.

Dynamical evolution of the system given by time dependent 
Schrödinger equation (TDSE)  



Goal: 
 To carry out classical dynamics of nuclei in QM potential  

>    Separate nuclear and electronic contributions to the total  
wave function Φ({ r } { R };t)wave  function  Φ({ ri },{ RI };t). 

The simplest possible form is a product ansatz

Then ,

Multiply by ψ({ ri },t) and Equation of motion for         
integrate over{ri }

Multiply by χ({ RI },t) and

χ ({RI },t)

Equation of motion for  Multiply by χ({ RI },t) and 
integrate over{RI }

q
ψ({ri },t)



Time dependent self-consistent field 
ti (TDSCF)equations (TDSCF)

 Both electrons and nuclei move quantum mechanically in
time-dependent effective potentials which are obtained self-
consistentlconsistently.

 The simple product ansatz produces mean field description of
the coupled nuclear and electronic dynamics.p y



Classical dynamics of nuclei and 
t d i f l tquantum dynamics of electrons

 Task of approximating the nuclei as classical point particles.
How? See Messiah, Vol I , Chapter-6

 Rewrite the nuclear wave function in the form Rewrite the nuclear wave function in the form

in terms of an amplitude factor A and a
h S hi h b th id d t b lphase S which are both considered to be real.

 Next Step: Use the above form in TDSCF equations and
t th l d i i tseparate the real and imaginary parts.



Time evolution of nuclear state in terms 
f S d Aof S and A

Note: Nuclear density

On multiplication by 2A >

Which can be written as 

Where               and 



 Take classical limit of equation of S

 Take gradient



 What about ψ({ ri },t) ?

Its TDSCF equation still contains the nuclear 
wave function Χ({ RI },t) !({ I }, )



Calculation of electronic wave function 
f l i l l ifor classical nuclei

 Classical limit:

 TDSCF ti f ({ } t) th b TDSCF equation for ψ({ ri },t) then becomes

 Electrons evolve self-consistently as the classical nuclei arey
propagated. The above approach of solving Newton equation
for nuclei and simultaneously time dependent Schrödinger
equation for electrons is called Ehrenfest molecular dynamicsequation for electrons is called Ehrenfest molecular dynamics.



Ehrenfest Molecular Dynamics
1. The electronic Hamiltonian He depends parametrically on

the classical nuclear positions { RI } at time t.

2. The feedback between the classical and quantum degrees of
freedom is incorporated in both directions although in a
mean field sense.

3 Its a hybrid or mixed quantum-classical approach because3. Its a hybrid or mixed quantum classical approach because
only the nuclei are taken as classical particles whereas the
electrons are treated quantum mechanically (QM).

4. Like real time classical evolution of nuclei, electronic
subsystem also evolves in real time according to time
dependent Schrödinger equation.



Born - Oppenheimer Molecular Dynamics

 We restrict the wave function ψ to be the ground state adiabatic
wave function ψ0 of He at each instant of time according toψ0 e g

( ) minM R t H  

0 0 0 0 0, ({ })e IH E E E R  

 The nuclei move on the ground state Born-Oppenheimer potential
f hi i ll d h h l l

0
0 0( ) minI I I eM R t H


  

energy surface. This is called the Born-Oppenheimer molecular
dynamics (BOMD).

 This should be a good approximation if the energy difference
between ψ0 and first excited state ψ1 is large everywhere
compared to the thermal energy k Tcompared to the thermal energy kBT.



Born - Oppenheimer Molecular Dynamics
1. E0 ({ RI }) or the ground state Born – Oppenheimer potential

energy surface is obtained by solving the time independente e gy su ace s obta ed by so v g t e t e depe de t
electronic Schrödinger equation.

2. The task of solving nuclear motion can be decoupled from theg p
task of computing quantum potential energies through
electronic structure calculations.

3. Intrinsic time dependence of ψ is ignored. It is assumed that
electrons follow adiabatically the classical nuclear motion.

4. The time dependence of the electronic structure is dictated by
its parametric dependence on the classical dynamics of the
nuclei which it just follows.



Born - Oppenheimer Molecular Dynamics

Let us focus on the electronic part for effective one particleLet us focus on the electronic part for effective one-particle
Hamiltonians, e.g. Hartree–Fock, Kohn-Sham

Say, Φi = one-electron wave functionS y, i o e e ec o w ve u c o

0
1 det{ }

! iN
 

Variational minimization of subject to the constraint that
one-particle wave functions are orthonormal leads to HF theory. The
above constrained minimization can be cast into Lagrange’sabove constrained minimization can be cast into Lagrange s
formalism

 0 0
,

e ij i j ij
i j

H       
Where, Λij are the associated Lagrange multipliers that are necessary to 
take care of the constraints.

, j



Effective one-electron equations
Unconstrained variation of the Lagrangian with respect to the
orbitals with

l d t th ll k H t F k (HF) tileads to the well known Hartree Fock (HF) equation –
0

i






HFH   
On unitary transformation,

e i ij j
j

H   
HF
e i i iH   

Where, ,

A i il ti i bt i d if K h Sh d it f ti l

 1 2HF
e j j

j

H H J K   2
1

1
2

I

I I

ZH
R r

  


A similar equation is obtained if Kohn-Sham density functional
theory is used:

1 ( )r 

KS
e i ij j

j

H   

Where, 21 ( )( ) [ ]
2

KS
e XC

rH V r dr V
r r
      





Relook at Ehrenfest and Born Oppenheimer 
Molecular Dynamics

Ehrenfest MD
1. Time step for integration is dictated

b h i i i d i f h

BOMD
1. The electronic problem is treated

i hi h i i d d

Molecular Dynamics

by the intrinsic dynamics of the
electrons. Since electrons move
much faster than nuclei, the largest
possible time step is that which

within the time independent
Schrödinger equation. No electron
dynamics whatsoever. This means
the equations of motion can bepossible time step is that which

allows us to integrate the electronic
equation of motion properly.

the equations of motion can be
integrated on the time scale of
nuclear motion, i.e. by using a larger
time step

2. The electronic wave function is
propagated by applying the
Hamiltonian to an initial wave

time step.
2. Electronic structure problem has to

be solved self-consistently at each
molecular dynamics step.

function.
y p

Best things: 
i Use large time stepsi. Use large time steps.
ii. Avoid solving electronic structure 

problem at every time.

Car – Parrinello molecular 
dynamics



Car-Parrinello Molecular Dynamics
 The Car-Parrinello approach takes direct advantages of the quantum

mechanical adiabatic time scale separation of fast electronic
(quantum) and slow nuclear (classical) motion(quantum) and slow nuclear (classical) motion.

 The two-component quantum-classical system is mapped into a two-
component purely classical problem with two separate energy scales
at the e penses of loosing the intrinsic time dependence of theat the expenses of loosing the intrinsic time dependence of the
electronic sub-systems.

 The central quantity is a function of { RI }. It is also
1considered to be a functional of { ɸi }, where

 In classical mechanics, the forces on the nuclei are obtained by

0
1 det{ }

! iN
 

taking the derivative of Lagrangian with respect to nuclear
coordinates.

 Given suitable Lagrangian, the functional derivative with respect toG ve su tab e ag a g a , t e u ct o a de vat ve w t espect to
orbitals, which are interpreted as classical fields, yield forces on the
orbitals.



Car – Parrinello Lagrangian 

where, and μ is the fictitious mass.

The corresponding classical equations of motion are given by 

; 

Nuclear Motion :



Orbital Motion 

For the case of Kohn–Sham DFT , the above equations read:

0 0( ) KS
I I eM R t H  

( ) KS
e i ij j

j

t H     

Which are known as Car-Parrinello equations of motion.

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471(1985)



Car-Parrinello molecular dynamics
 The nuclei move in time at a physical temperature

 We can assign a fictitious temperature to thei i     

2
I I

I
M R 

We ca ass g a ct t ous te pe atu e to t e
orbitals, i.e. to the electronic degrees of freedom.

 When electrons are ‘cold’, is very small.

i i
i
  

i i
i
    

So that,

which is the KS equation for electronic orbitals.

i

~ 0i 0 K S
e i i j j

j

H     
q

 For low electronic fictitious temperature, the electronic
subsystem remains close to the exact BO surface.

 A ground state wave function optimized for the initial
configuration will stay close to its ground state during time
evolution as long as it is kept at low fictitious temperatureevolution as long as it is kept at low fictitious temperature.



Running Car-Parrinello molecular dynamicsg y
 The main task is to separate in practice the nuclear and

electronic motion such that the fast electronic subsystem staysy y
cold also for long times but still follows the slow nuclear
motion adiabatically.
Th l i t th l b k t t h hi h The nuclei must themselves be kept at a much higher
temperature.

 This can be achieved via decoupling of the two subsystems.p g y
Decoupling is possible if the power spectra of both subsystems
do not have substantial overlap of their vibrational density of
states This would prevent energy leakage from hot nuclei tostates . This would prevent energy leakage from hot nuclei to
cold electrons.

 The above requirements can be achieved by proper choice ofq y p p
parameters such as fictitious mass, time step etc.



An example of vibrational density of states from CPMD 
i l i Sili i di l isimulation – Silicon atom on a periodic lattice

[ D Marx and J Hutter Ab Initio Molecular Dynamics: Theory and Implementation[ D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Theory and Implementation, 
Cambridge University Press (2009) ]



Comparison of Forces Obtained from Car-Parrinello and 
Born-Oppenheimer Molecular Dynamics 

[ D Marx and J Hutter Ab Initio Molecular Dynamics: Theory and Implementation[ D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Theory and Implementation, 
Cambridge University Press (2009) ]



Summary



Summary

(QM) Dynamical Simulation Methods:
 Born-Oppenheimer molecular dynamics:Born Oppenheimer molecular dynamics:

00 ; det{ }i ij j iH        
0 0{ }

( ) min{ }
i

I I I eM R t H


   

 Ehrenfest Molecular Dynamics :

00 ; det{ }e i ij j i
j

H     

( )M R H  

C P i ll M l l D i

( )

( )
I I I e

e

M R t H

i t H

   

  

 Car- Parrinello Molecular Dynamics 
0 0( )

( ) ; det{ }
I I I eM R t H

t H   

   

    



0( ) ; det{ }i i e i ij j i

j

t H        


