Study Of Nuclei at High Angular Momentum - Day 2

Outline

1) Introduction
2) Deformation and Rotation in Nuclei Mean Field
Cranked Shell Model
3) Cranked Shell Model Applied to Exp.
4) Superdeformation

Michael P. Carpenter
Nuclear Physics School, Goa, India
Nov. 9-17, 2011

Some of the Physics Questions

How does the asymmetry in the proton and neutron Fermi surfaces impact the nucleus; i.e.

What is the impact on the mean field as reflected in:
the single particle energies
the shapes and spatial extensions

PROTON RICH
$\mathrm{S}_{\mathrm{n}} \sim 15 \mathrm{MeV}, \mathrm{S}_{\mathrm{p}} \sim 0$

STABLE
$\mathrm{S}_{\mathrm{n}} \sim \mathrm{S}_{\mathrm{p}} \sim 8 \mathrm{MeV}$

Nuclear Shell Model (text book physics)

Nuclear Shapes

Describing the nucleus as a liquid drop leads to the idea of collective coordinates ignore motions of individual nucleons and treat nucleus as a continuous medium Parameterized Shape of Liquid Drop $\quad R(\vartheta, \varphi, t)=R_{0}\left(1+\sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda \mu}(t) Y_{\lambda \mu}(\theta, \varphi)\right)$ where $\alpha_{\lambda \mu}(t)$ are the collective coordinates which are time dependent - this allows for vibrations of the surface
Quadrupole Deformation $\left(\mathbf{Q}_{0}\right)$:
Rotation Symmetry: $\quad \alpha_{2 \mu}(t)$
Rotational Bands,
Enhanced E2 transitions;

Octupole Deformation (D_{0}): Reflection Symmetry:

Parity Doublets, $\quad \alpha_{3 \mu}(t)$
Enhanced E1 transitions

Vibrations of a QM Liquid Drop

Hamiltonian can be cast into form

$$
\hat{H}=\sum_{\lambda \mu}\left\{b_{\lambda \mu}^{+} b_{\lambda \mu}+\frac{1}{2}\right\}
$$

where $b_{\lambda \mu}^{+}\left(b_{\lambda \mu}\right)$ is a phonon creation (annihilation) operator

The terms in order of importance (for small amplitude motion and low excitation energies) are $\lambda=2$ (quadrupole vibrations), $\lambda=3$ (octupole vibrations), etc.

Nuclear Deformation

$$
R(\theta, \varphi, t)=R_{0}\left[1+\sum_{\lambda=0} \sum_{\mu=-\lambda}^{+\lambda} a_{\lambda \mu}(t) Y_{\lambda \mu}(\theta, \phi)\right] \quad a_{20}=\beta \cos \gamma \quad a_{22}=a_{2-2}=\frac{1}{\sqrt{2}} \beta \sin \gamma
$$

Rotation Coupled to Vibration

232Th

K. Abu Saleem, Ph D. Thesis, Argonne Nat. Lab.

Concept of the Mean Field

Wood Saxon

Harmonic Oscillator

$$
V_{w s}=V_{c}(\mathbf{r} ; \hat{\beta})+V_{S O}(\mathbf{r} ; \hat{\beta})+\frac{1}{2}\left(1+\tau_{3}\right) V_{c o u l}(\mathbf{r} ; \hat{\beta})
$$

where

$$
V_{c}=\frac{V_{0}}{1+\exp \left[\frac{r-R}{a}\right]}
$$

$$
V_{m o}=V_{o s c}-2 \kappa \hbar \omega_{0}\left[l_{\mathrm{t}} \bullet s_{\mathrm{t}}-\mu\left(l_{\mathrm{t}}^{2}-\left\langle l_{\mathrm{t}}^{2}\right\rangle\right)\right]
$$

For axial symmetry $\quad V_{\text {osc }}=\frac{1}{2} \hbar \omega_{0} \rho^{2}\left[1-\frac{2}{3} \varepsilon_{2} P_{2}\left(\cos \vartheta_{t}\right)\right]$

Nilsson Diagrams

- Asymptotic labels $\left(\left[\mathrm{Nn}_{\mathrm{z}} \Lambda\right] \Omega\right.$) valid at extreme deformations
- Spherical labels quickly break down with deformation, but are fairly good for the unique-parity states
- The slope of a Nilsson level is related to the intrinsic s.p. moment
- For odd-A deformed systems, the angular momentum of the band-head of a rotational band usually coincides with Ω

Cranking Hamiltonian

- Cranking Hamiltonian supplies energies in the rotating frame for each quasiparticle
- Note how rotation $\left(\omega j_{\mathrm{x}}\right)$ breaks time reversal symmetry of quasiparticle pairs
- Alignment of quasiparticle along rotational axis is give by $i=\partial e^{\prime} / \partial \omega$.

Rotation of Deformed Nuclei

rotational axis \perp symmetry axis

$$
E(I)=\frac{\hbar^{2}}{2 \mathrm{~J}}\left[I(I+1)-K^{2}\right]
$$

kinematic moment of inertia

$$
\mathrm{J}^{(1)}=I\left(\frac{\partial E}{\partial I}\right)^{-1}=\frac{I}{\hbar \omega} \approx \frac{\Delta I\langle I\rangle}{E_{\gamma}}
$$

dynamic moment of inertia

$$
\mathrm{J}^{(2)}=\left(\frac{\partial^{2} E}{\partial I^{2}}\right)^{-1}=\frac{\partial I}{\hbar \partial \omega} \approx \frac{(\Delta I)^{2}}{\Delta E_{\gamma}}
$$

$$
\mathbf{J}^{(2)}=\mathbf{J}^{(1)}+\omega \frac{\partial \mathbf{J}^{(1)}}{\partial \omega}
$$

$J{ }^{(2)}$ measures the variation of J rigid rotor: $J^{(2)}=J{ }^{(1)}$
rotational frequency

$$
\hbar \omega=\frac{\partial E}{\partial I} \approx \frac{E_{\gamma}}{\Delta I}
$$

Nuclear Level Schemes Transformed to Rotating

 Frame

Alignments and Crossing Frequencies

Deformation Driving Effects of Quasiparticles

G.A. Leander. S. Frauendorf, F.R. May, in High Angular Momentum Properties, ed. by N.R. Johnson (1982) p. 281

Shell Correction Method

Total Energy of nuclei can be calculated using two-body interaction:

$$
E_{0}=\sum_{m} e_{m}^{(H F)}-\frac{1}{2} \int \rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right) V\left(\mathbf{r}, \mathbf{r}^{\prime}\right) d^{3} \mathbf{r} d^{3} \mathbf{r}^{\prime}
$$

Strutinsky showed that total energy could be calculated from mean field

$$
E_{0} \approx E_{S C}=E_{L D}+\delta E_{s h}
$$

where

$$
\delta E_{s h}=E_{s h}-\langle\tilde{E}\rangle
$$

It can then be shown

$$
R^{\omega}=E^{L D}+\delta E_{s h}^{\omega=0}+\sum\left(e_{i}^{\omega}-e_{i}^{\omega=0}\right)
$$

Global Calculation of Ground State Deformations

Total Routhian Surfaces

A Practical Example

Actinide Region Show Deformed Systems

D. Ward et al., Nucl. Phys. A 600 (1996) 88.

Selected Even-Even Yrast Bands

CSM calculations indicate that the single band crossing observed results from simultaneous alignment of neutrons $\left(\mathrm{j}_{15 / 2}\right)$ and protons ($\mathrm{i}_{13 / 2}$)

How Do We Confirm This Experimentally?

- In the even-even system, the slope of the occupied Routhians change after the crossing corresponding to the alignment of the quasiparticle pair.
- In an odd-A system excitations in the CSM are made by promoting particles into the appropriate quasiparticle orbital.
- After the band crossing the occupied configurations are identical; we say that the alignment is blocked (Pauli Blocking).
- In addition, the occupied orbital results in reduction of pairing correlations.

Identify Single-particle States in Odd Neutron Nuclei

S. Zhu et al., Phys. Lett. B618, 51 (2005)

Identify Single-particle States in Odd Proton Nuclei
 ${ }^{237} \mathrm{~Np}$

K. Abu Saleem et al, Phys. Rev. C 70, 024310

Blocking Arguments using Alignment Plots

- ${ }^{237} \mathrm{U}$ - odd $-N, j_{15 / 2}$ band similar to $d_{5 / 2}$ band ($\pi i_{13 / 2}$ alignment) $N=145$.
- ${ }^{237} \mathrm{~Np}$ - odd- $Z, i_{13 / 2}$ band no upbend (no $v j_{15 / 2}$ alignment) $N=144$.

Where Did the $j_{15 / 2}$ Alignment Go?

1. In CSM calculations the neutron pairing is found to be quite weak which could result in slow decoupling of $j_{15 / 2}$ pairs as function of spin - superdeformed 190 region.
2. CSM calculations are wrong and actual alignment is at higher rotational frequency.

- Current data cannot distinguish which is correct interpretation
- Odd-Odd nuclei might aid in distinguishing 1 from 2.

New Results for ${ }^{236} \mathrm{~Np}$

- Doppler correct for target-like and projectile-like fragments.

New results on ${ }^{238} \mathrm{~Np}$

- Thick target ${ }^{209} \mathrm{Bi}+{ }^{237} \mathrm{~Np}$ @ 1450 MeV
- Identification to ${ }^{238} \mathrm{~Np}$ by cross coincidences with ${ }^{208} \mathrm{Bi}$.

What do the Odd-Odd Nuclei Tell Us?

- The alignment characteristics of the ${ }^{236,238} \mathrm{~Np}$ bands can only be understood if the proton configuration is $5 / 2[642]$ i.e. the $i_{13 / 2}$ proton alignment is blocked.
- The difference in total alignment between bands of ${ }^{236} \mathrm{~Np}$ and ${ }^{238} \mathrm{~Np}$ results from different neutron configurations ($\mathrm{j}_{15 / 2}{\text { vs } \mathrm{d}_{3 / 2} \text {). }}_{\text {. }}$
- The near identical trajectories of the ${ }^{236,238} \mathrm{~Np}$ bands contradict the CSM calculations which predict the alignment of a $v j_{15 / 2}$ pair for $\hbar \omega<0.25 \mathrm{MeV}$.

Lessons Learned

- In the study of nuclei at high-spin, it is essential to explore the rotational properties of not only the even-even, but odd-A and odd-odd nuclei as well.
- Placing particles in different orbitals and observing their response to rotation allows for a deep understanding of the underlying nuclear structure.
- The reason for the missing $j_{15 / 2}$ alignment is unknown and still and open questioned to be pursed.
- You should not consider the breakdown of the CSM as a failure but rather and opportunity to solve an outstanding problem.
- By digging deeper. solutions to this problem may result in deeper understanding.
- I will show another example tomorrow to illustrate this.

Superdeformation : The Ultimate in High Spin

Superdeformation: Shell Effects at Large Deformation

Single-particle levels for an Harmonic Oscillator potential as a function of elongation \rightarrow Shell gaps at large deformation (2:1, 3:1)

Single-particle levels for a WoodsSaxon potential (high level density regions are shaded) \rightarrow Shell gaps remain, but not necessarily at 2:1 or 3:1 exactly

Role of Rotation: deepening of the SD minimum :

- Due to large moments of inertia SD becomes yrast at high spin
- Must use fusion-evaporation with heavy ions to feed in to SD well at high spin.

SUPERDEFORMATION

A UNIQUE OPPORTUNITY
(1) TO TEST OUR UNDERSTANDING OF THE IMPORTANCE OF SHELL STRUCTURE AT LARGE DEFORMATIONS
(2) TO STUDY THE DECAY FROM ONE POTENTIAL WELL INTO ANOTHER

A FEW OF THE MANY INTERESTING QUESTIONS:

- IDENTIFICATION OF ORBITALS NEAR THE FERMI SURFACE IN THE SD WELL
- ROLE OF SPECIFIC SHAPE DRIVING ORBITALS
- STIFFNESS OF THE SD WELL AND POSSIBLE COLLECTIVE EXCITATIONS
- PAIRING AT LARGE β_{2}
- CORIOLIS INTERACTION AND PARTICLE ALIGNMENTS AT LARGE β_{2} ?
- NEW SYMMETRIES ?
- MORE SURPRISES (IDENTICAL BANDS, $\triangle \mathrm{I}=4$ BIFURCATION ...) ?
- WHICH PARAMETERS GOVERN FEEDING INTO \& DECAY OUT OF SD WELL ?

The First SD Rotational Band

-T. Lauritsen et al., Phys. Rev. Lett. 88, (2002). 042501

- T. Lauritsen et al., Phys. Rev. Lett. 89 (2002) 282501

Many Bands Have Been Identified

P. Dagnal et al., PLB 335, 313

More SD Bands \rightarrow the SD well sustain many excitations

SD Regions

Measured Quadrupole Moments Establish Deformation

Physics of Shell Gaps

Doubly Magic Superdeformed Nuclei

Examples of Extreme Single Particle Motion

Even though the bands appear extremely regular, differences in moments of inertia are present

Both the difference in moments of inertia and quadrupole moments can be explained by differences in occupied intruder orbitals.

Linking of SD Band with Yrast States

Sum of two-fold clean SD gates (Band-1)

Gate requiring 4011 keV linking transition in coincidence with members of SD band.

$$
{ }^{108} \mathrm{Pd}\left({ }^{48} \mathrm{Ca}, 4 \mathrm{n}\right)^{152} \mathrm{Dy}
$$

38 shifts (12 days)
Isomer tagging (87 nsec isomer)

Angular Distribution Determines Spin

- Angular distribution of 4011 keV transitions establishes I of 26 or 28 for 11893 SD level
- Feeding of 29^{+}state from 11893 level establishes spin to be 28.
- Parity comes from fact that E1's should dominate over M1's at these energies.
- Assigned parity consistent with single particle interpretation of band.

Comparison to Theory

Experiment: Lowest State in SD band:

Calculations:

$\| \pi=24^{+} \quad E\left(0^{+}\right)=7.5 \mathrm{MeV}$

Nilsson - Strutinsky $\quad 26^{+} \quad 8.8 \mathrm{MeV}$ I. Ragnarsson NP A557, 167
Woods - Saxon $22^{+} \quad 8.4 \mathrm{MeV}$ J. Dudek et al., PR C38, 940
Relativistic Mean Field $24^{+} \quad$ 8.3 MeV A.V. Afanasjev et al.,
NP A634, 395
Hartree Fock Bogoliubov 24+ 7.1 MeV J.L. Egido et al., PRL 85, 26

SD Minima is Distinct from ND Minima

Chaos to order to Chaos to Order

Coexistence of collective and noncollective motion

Nuclear Data Sheets 95 (2002) 995

What Might the Future Hold?

$\mathrm{v} / \mathrm{c}=0.04$

- Greta and Agata will allow us to look for cascades which are populated two orders of magnitude weaker than currently achievable
- Possibility of observing even more exotic shapes e.g. Hyperdeformation (3:1).

Octupole Collectivity: Do We have the Right Picture?

Octupole Collectivity

I. Ahmad \& P. A. Butler, Annu. Rev. Nucl. Part. Sci. 43, 71 (1993).
P. A. Butler and W. Nazarewicz, Rev. Mod. Phy. 68, 349 (1996).

Where to find enhanced octupole collectivity

Long-range interactions between single particle states with $\quad \Delta j=\Delta l=3$;

Difficult regions to study experimentally

Multi-Nucleon Transfer: ${ }^{136} \mathrm{Xe}+{ }^{232} \mathrm{Th}$ (Gammasphere)

J.F.C. Cocks et at., Nuc. Phys. A 645 (1999) 61

A~146 Region (Ba, Ce, Nd, Sm)
${ }^{252} \mathrm{Cf}$ spontaneous fission yield
$\mathrm{T}_{1 / 2}=2.6 \mathrm{a} \quad 3+\%$ fission branch

- Neutron rich region, excited states populated by spontaneous fission.
- CARIBU at ANL will provide reaccelerated beams of neutron-rich Ba isotopes for Coulomb excitation studies.

Rotation appears to stabilize static octupole shape

J. Smith et al., Phys. Rev. Lett. 75 (1995) 1050.

Large Dipole Moments $D_{0} \sim\left[B(E I) /<I_{i} 010\left|I_{f} 0\right\rangle\right]^{1 / 2}$ where
$D_{0}>0.2 \mathrm{eb}-\mathrm{fm}$

Odd-A Nuclei Exhibit Evidence of Octupole Collectivity

Octupole phonon coupled to quasiparticle
S. Zhu et al., Phys. Lett. B618, 51 (2005

Signature of Octupole Collectivity in Odd-A Systems

Parity Doublets (Octupole deformed)

Alternative Explanation of static Octupole Deformation

Energy $=$ Vibrational + Rotational

$$
E_{n}=\hbar \Omega_{3}(n+1 / 2)+\mathfrak{J} \omega^{2} / 2
$$

Lowest excitation when phonon's align with rotational axis.

$$
E_{n}^{\prime}(\omega)=\hbar \Omega_{3}(n+1 / 2)-n i \omega-\Im \omega^{2} / 2
$$

At critical frequency, ω_{c}, all phonon Routhians converge resulting in phonon condensation.

$$
\begin{aligned}
& \omega_{c}=\Omega_{3} / i \\
& \omega_{c}: E_{n}(\omega)=E_{n+1}(\omega)
\end{aligned}
$$

S. Frauendorf, Phys Rev. C 77 (2008) 021304(R).

What is the Resultant Shape at Condensations

$$
\omega_{c}=\Omega_{3} / 3
$$

Consequence of Anharmocities.

- Due to anharmocities, phonons bands will cross at different frequencies
- Phonon's of same parity will interact.
- Resulting yrast line will have states on average which appear to be interweaved as expected for static octupole shape.
S. Frauendorf, Phys. Rev. C 77 021304(R).

Can One Distinguish Between the Two Pictures?

New Results on ${ }^{240} \mathrm{Pu}$

- Interleaving E1 transitions now observed between yrast (1) and octupole (2) bands.
- Positive parity band built on 0^{+}state at 861 keV is observed to high-spin.
- Competes in excitation energy with yrast band.
- Decays exclusively to octupole band
- Large B(E1)/B(E2) ratios: $\sim 1 \times 10^{-8} \mathrm{fm}^{-2}$
- Band with these characteristics not seen before
X. Wang et al., Phys. Rev. Lett. 102, 122501 (2009)

Dipole Moment at High-Spin is Large

X. Wang et al., Phys. Rev. Lett. 102122501 (2009)

Strong evidence for phonon condensation.

X. Wang et al., Phys. Rev. Lett. 102, 122501 (2009)

Is There More Evidence for Octupole Condensation?

New Results on ${ }^{238} \mathbf{U}$

- New positive parity band in ${ }^{238} \mathrm{U}$
- Strongly decays to one-phonon band;
- Sizable $B(E 1)_{\text {out }} / B(E 2)_{\text {in }}$ ratios:
$\sim 2 \times 10^{-9} \mathrm{fm}^{-2}$
- Weakly decays to yrast band
- Negative parity band never interleaves with yrast band.
S. Zhu et al., Phys. Rev. C 81 (2010) 041306(R)

Contrast Octupole Phonon bands in ${ }^{238} \mathrm{U}$ and ${ }^{240} \mathrm{Pu}$

