IDENTIFYING THE QUARK-HADRON PHASE TRANSITION WITH G-MODE OSCILLATIONS

Prashanth Jaikumar, California State U. Long Beach

PHY 1608959 PHY 1913693

Collaborators: Thomas Klaehn (CSU Long Beach), Megan Barry (UC Davis), Marc Salinas (Florida State U.), Bryen Irving (Stanford U.), Wei Wei (Huazhong U.)

Looking forward to more exciting connections between

The Compact Star/GW community in India

&

ICTS

&

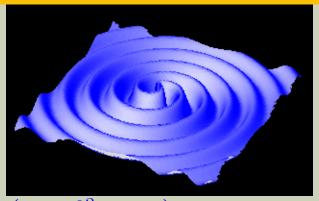
CSQCD

OUTLINE

- Motivation: Gravitational Waves as Discovery Tool
- Nuclear Physics: From Nuclear to Quark Degrees of Freedom
- g-mode Oscillations: The two sound speeds
- Effects of Quark Matter on the g-mode Oscillation Spectrum
- Observational Outlook for g-modes: Damping and SNR

GRAVITATIONAL WAVES (LIGO/VIRGO)

- First detection of BH-BH (GW150914)/NS-NS (GW170817)/?BH-NS(GW190814)?
- Confirmation of short-GRB mechanism
- Bound on graviton mass
- Strong field tests of GR
- Neutron star radii and EOS constraints
- Existence of Black Holes
- Cosmology & Particle Physics

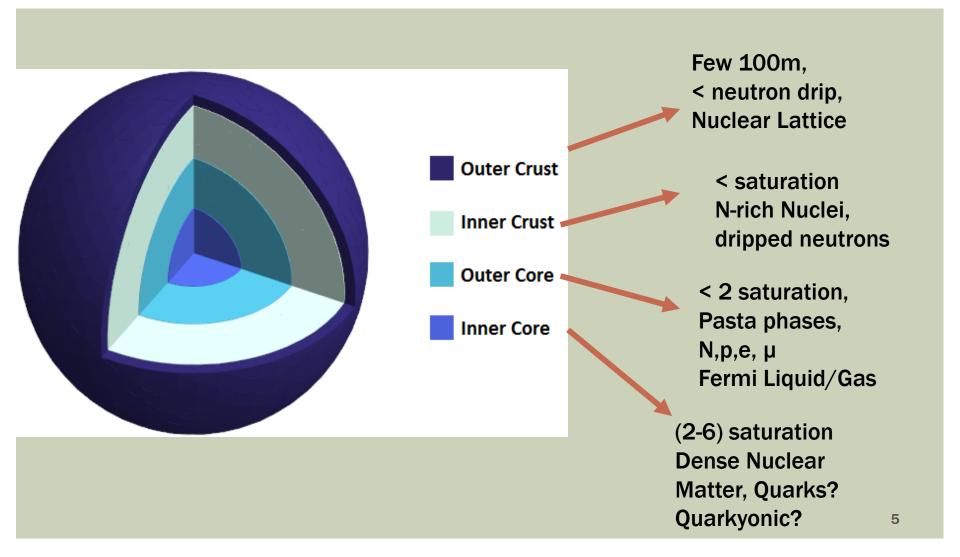


$$G = \frac{8\pi G}{c^4} T$$

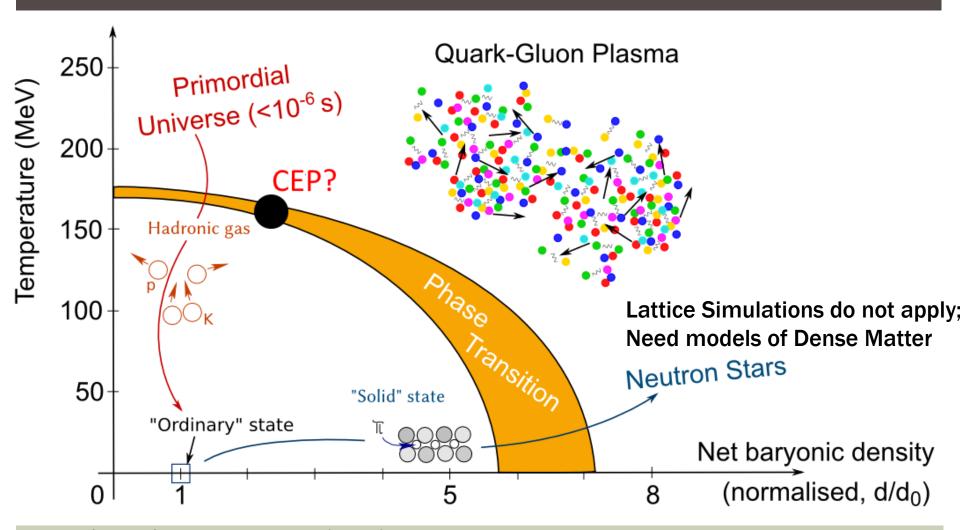
$$\left(-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} + \nabla^2\right)\bar{h}_{\mu\nu} = 0$$

$$ar{h}_{\mu
u} = h_{\mu
u} - rac{1}{2} g_{\mu
u} h$$

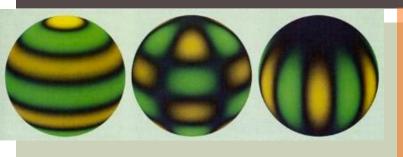
NEUTRON STAR INTERIOR



QCD PHASE DIAGRAM

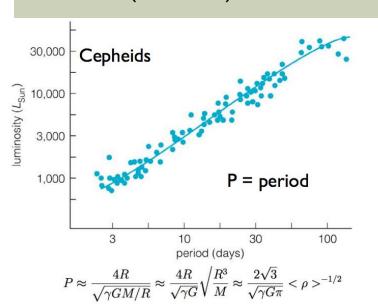


WHY STUDY STELLAR OSCILLATIONS?



(ACOUSTIC)

(OPTICAL)



- 1. Dynamo origin of solar magnetic field (Provided proof for differential rotation in the Sun)
- 2. Verified age of Sun ~ 4.6 billion yrs (sound speed depends on He/H ratio)
- 3. Pointed to neutrino oscillations (Ruled out solar physics solution to the neutrino problem)

Non-adiabatic radial oscillations

Change of Ionization state drives pulsations

Standard Candle for Extra-galactic scales on the Cosmic distance ladder

GRAVITATIONAL WAVES

CAN WE USE GRAVITATIONAL WAVES

TO TELL THE COMPOSITION OF A NEUTRON STAR?

Modes (Non-Rotating, Zero-B and Temperature)

► Fluid Displacement (Spheroidal)

$$\xi(r,\theta,\phi,t) = \mathcal{R} \left\{ \sum_{lm} \left[\frac{\xi_r(r) Y_{lm}(\theta,\phi) \hat{r}}{\xi_r(r) Y_{lm}(\theta,\phi) \hat{r}} + \frac{\xi_h(r)}{\theta} \left(\frac{\partial Y_{lm}}{\partial \theta} \hat{\theta} + \frac{1}{\sin \theta} \frac{\partial Y_{lm}}{\partial \phi} \hat{\phi} \right) \right] e^{i\omega t} \right\}$$

Newtonian for simplicity: (primes = Eulerian perturbations)

Continuity:
$$\rho' = -\nabla . (\rho_0 \xi)$$
,
Euler: $\rho_0 \xi_{tt} = -\nabla p' - \rho_0 \nabla \phi' - \rho' \nabla \phi_0$,
Poisson: $\nabla^2 \phi' = 4\pi G \rho'$ (Cowling Approximation)
Energy: $p' + \xi . \nabla p_0 = \frac{\Gamma_1 p_0}{\rho_0} (\rho' + \xi . \nabla \rho_0)$

Boundaries

► (Fluid) Center (r = 0): Regularity $\Rightarrow p', \phi' \sim \mathcal{O}(r^l), \xi_r \sim \mathcal{O}(r^{l-1})$

$$\left(\frac{\rho_{\rm av}}{\rho_c}\right)\frac{\Omega^2 \xi_r}{l} + \frac{p'}{\rho_c g} = 0 \tag{1}$$

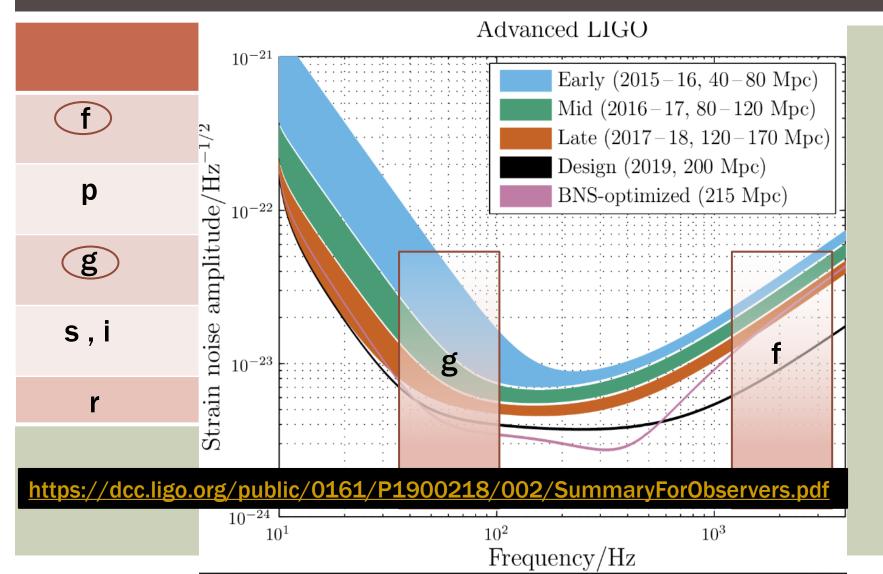
▶ (Fluid) Surface (r = R): Free surface $\implies \delta p|_{r=R} = 0$

$$p' + \left(\frac{dp_0}{dr}\right)\xi_r = 0 \tag{2}$$

▶ (Solid) Interface $(r=r_i)$: Traction $(T=\tau.\hat{n})) \implies T_h|_{r=r_c}=0$

$$\delta \tau = \mu \left(\nabla \xi + (\nabla \xi)^T \right) + \left(\kappa - \frac{2\mu}{3} \right) \mathbb{1} \nabla \cdot \xi \tag{3}$$

TYPES OF MODES



GENERAL RELATIVITY

Spherically Symmetric Background: Schwarzschild Metric

$$ds^{2} = e^{2\nu} (dt)^{2} - e^{2\mu_{2}} (dr)^{2} - e^{2\mu_{3}} (d\theta)^{2} - e^{2\psi} (d\phi)^{2}$$

Metric perturbations

$$g_{\mu\nu} = g^0_{\mu\nu} + h_{\mu\nu} \longrightarrow \delta G_{\mu\nu} = 8\pi \delta T_{\mu\nu}$$

5 non-linear coupled PDE inside, 2 outside – a computationally intensive problem

AXIAL MODES OF BLACK HOLES

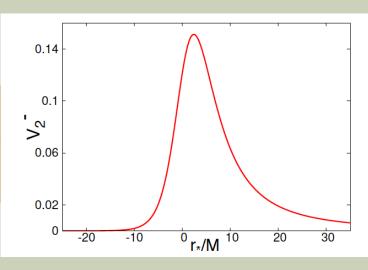
Chandrasekhar and Detweiler (Proc. Roy. Soc. A. 344 1639 1975):

- radial part of the perturbation equation is a Schrodinger equation

Zerilli Equation:

$$\frac{d^2Z}{dr_*^2} + [\omega^2 - V_2^-(r)]Z = 0$$

$$r_* = r + 2M \ln(r/2M - 1)$$

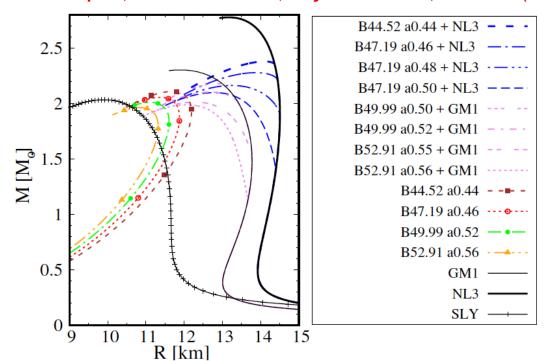


Finding Quasi-Normal Modes =>
Solving 1D Schrodinger equation for scattering from a central potential

Various Methods: Resonances, WKB, Continued Fraction

Neutron Stars / Strange Stars - Core EOS

Vasquez, Hall & Jaikumar, Phys. Rev. C 96, 065803 (2017)



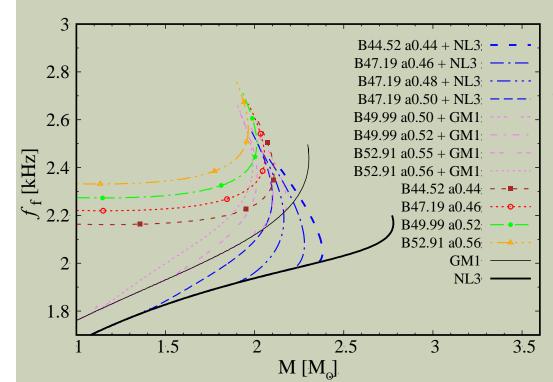
Quark Matter EOS (Bag $+ a_4$)

$$P_{q,\text{core}} = \frac{1}{3} (\epsilon - 4B) - \frac{m_s^2}{3\pi} \sqrt{\frac{\epsilon - B}{a_4}} + \frac{m_s^4}{12\pi^2} \left[2 - \frac{1}{a_4} + 3 \ln \left(\frac{8\pi}{3m_s^2} \sqrt{\frac{\epsilon - B}{a_4}} \right) \right]$$

Hadronic EOS (SLy)

$$10^5 \le \rho(g/cc) \le 10^8$$
; BPS
 $10^8 \le \rho(g/cc) \le 5.10^{10}$; HP
 $5.10^{10} \le \rho(g/cc) \le \rho_c$; SLy

F-MODE: NEUTRON MATTER VS QUARK MATTER

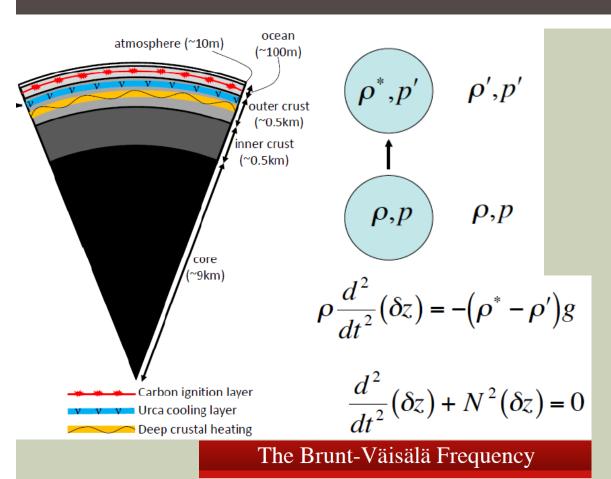


- f-mode frequencies approximately constant for pure quark matter up to 1.8 Msun
- Detection in AdLIGO would support Neutron/Hybrid stars
- Detection in Schenberg/Mini-Grail (NEMO?) would support some fraction of quark matter in neutron stars

Vasquez, Hall & Jaikumar, Phys. Rev. C 96, 065803 (2017)

Hinderer et al., Nature Communications 11 2553 (2019) – $f_2 > 1.4$ kHz from GW170817

LOCALIZED MODES - OCEAN (g-MODE)



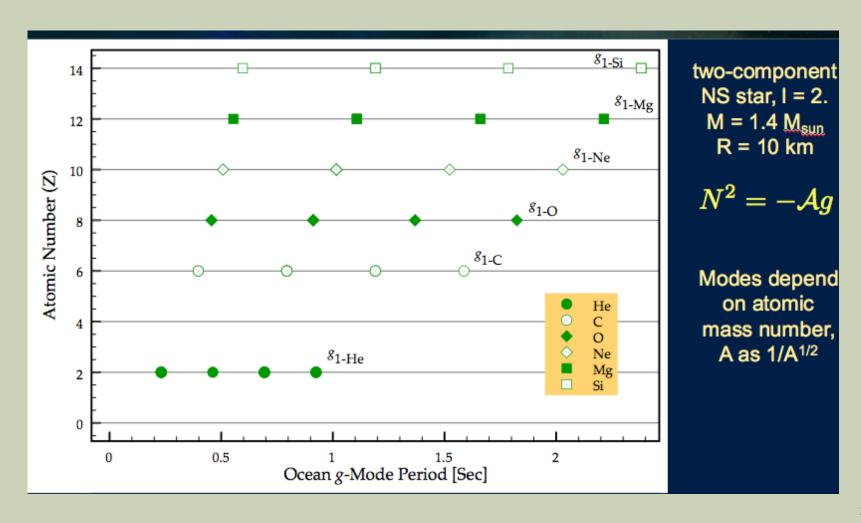
$$N^{2} = -\frac{g}{r} \left(\frac{1}{\Gamma_{1}} \frac{\mathrm{d} \ln p}{\mathrm{d} \ln r} - \frac{\mathrm{d} \ln \varrho}{\mathrm{d} \ln r} \right)$$

Restoring force from Buoyancy (density dependent)

Evidence for g-modes:

10-100 Hz frequencies may explain modulation of X-ray flux during accretion events

G-MODES AND COMPOSITION

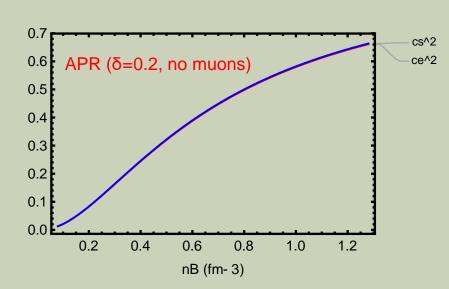


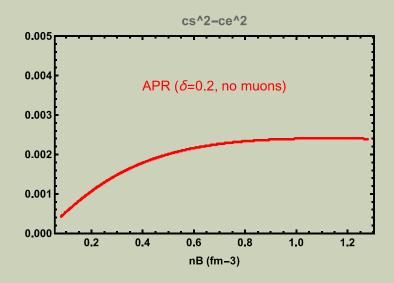
CORE G-MODES

$$N^2 = g^2 \left(\frac{1}{c_e^2} - \frac{1}{c_s^2} \right) e^{\nu - \lambda}$$

Cs: The adiabatic sound speed: beta-equilibrium timescale > oscillation timescale

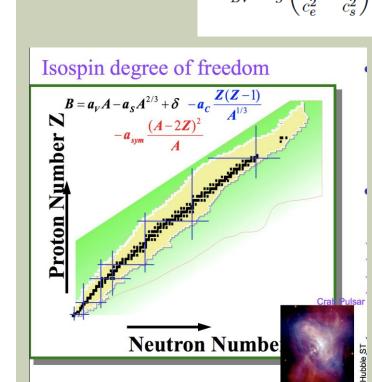
$$c_s^2 = \left(\frac{\partial p}{\partial \varepsilon}\right)_{x_{\mathbf{x}}}$$



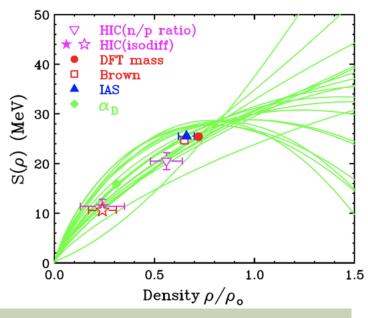


SYMMETRY ENERGY

$$\omega_{BV} = g \left(\frac{1}{c_e^2} - \frac{1}{c_s^2} \right)^{1/2} \approx 2 \left(\frac{g}{c_e} \right) \left(\frac{x}{3} \right)^{1/2} \frac{(3nE_s' - E_s)}{\sqrt{E_s(\frac{10}{9}E_0 + 2nE_s' + n^2E_S'')}}$$



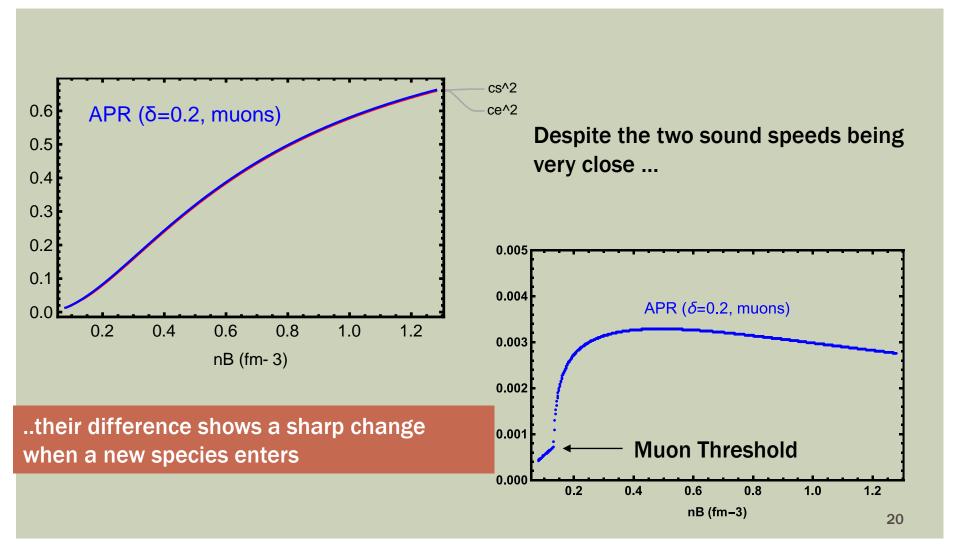
Models constrained at low density only



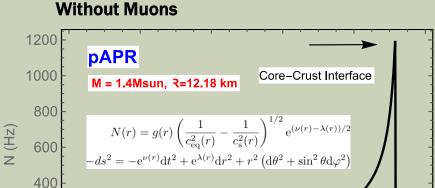
Lynch and Tsang,

e-Print: 1805.10757 [nucl-ex]

SOUND SPEED AND COMPOSITION



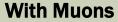
BRUNT VAISALA FREQUENCY

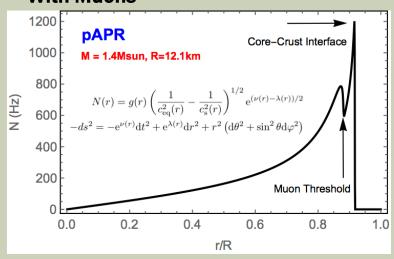


0.4

0.6

0.8





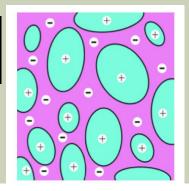
0.2

200

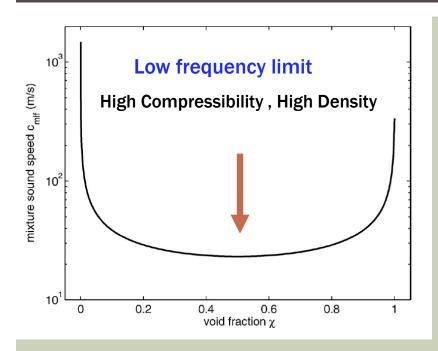
0.0

Homogeneous phases : g-mode frequency ~ 100 Hz

How does sound propagate in a mixed phase?



SOUND IN BUBBLY FLUID



Wilson & Roy, AmJ. Phys. 76, 975 (08)

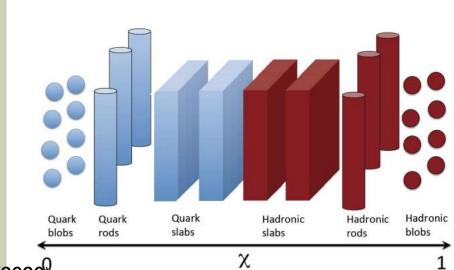
$$\frac{1}{c_{\text{mlf}}^2} = \frac{(1-\chi)^2}{c_{\ell}^2} + \frac{\chi^2}{c_g^2} + \chi(1-\chi) \frac{\rho_g^2 c_g^2 + \rho_{\ell}^2 c_{\ell}^2}{\rho_{\ell} \rho_g c_{\ell}^2 c_g^2}$$

In a neutron star - quark hadron mixed phase

Two conserved charges:

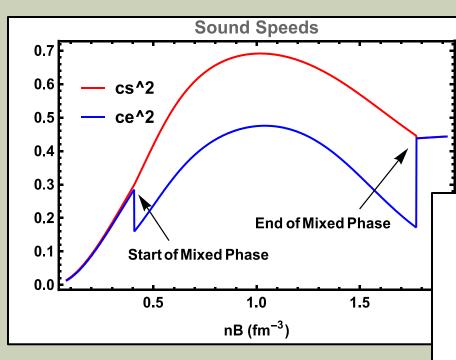
Electric charge and baryon number

$$c_{\rm mix}^2 = \frac{dP_{\rm mix}(\mu_B, \mu_Q)}{d\rho} = \frac{\partial P_{\rm mix}}{\partial \mu_B} \left(\frac{d\mu_B}{d\rho}\right) + \frac{\partial P_{\rm mix}}{\partial \mu_Q} \left(\frac{d\mu_Q}{d\rho}\right)$$



Barry, Salinas, Wei, Klaehn & Jaikumar, submitted to ApJ (2020)

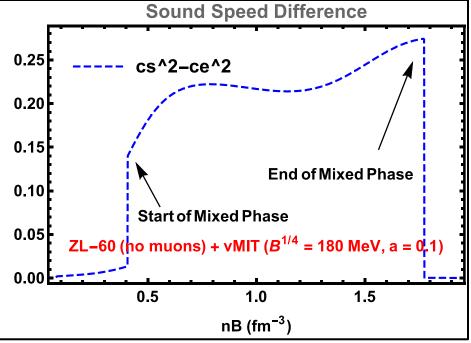
MIXED PHASE IDENTIFICATION



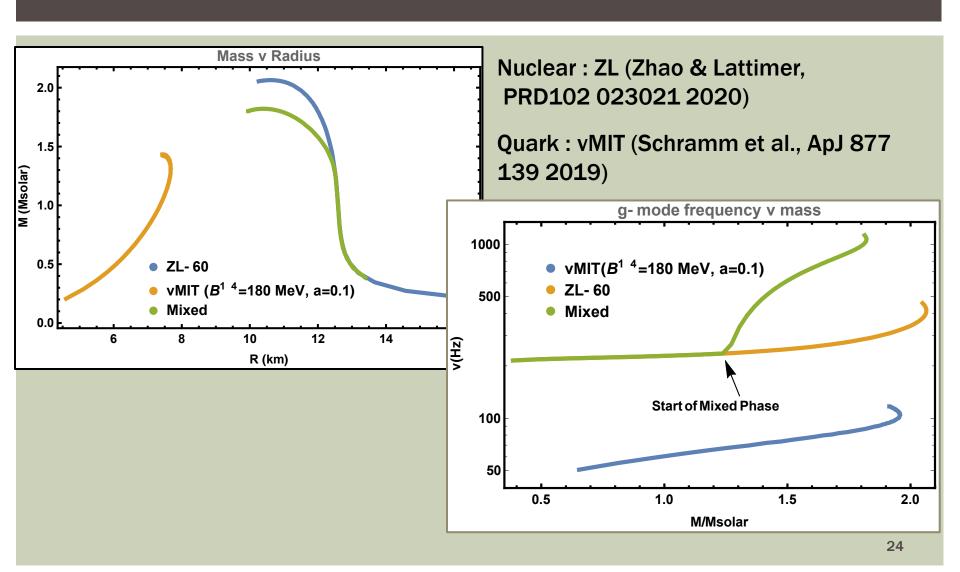
Nuclear : ZL (Zhao & Lattimer, PRD102 023021 2020)

Quark: vMIT (Schramm et al., ApJ 877

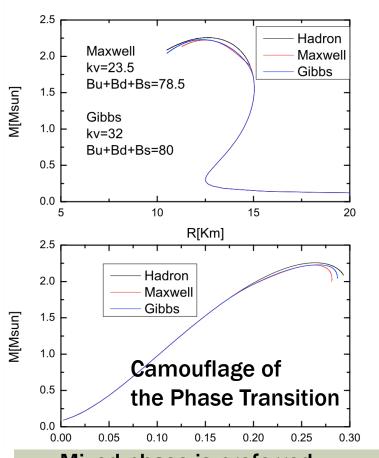
139 2019)



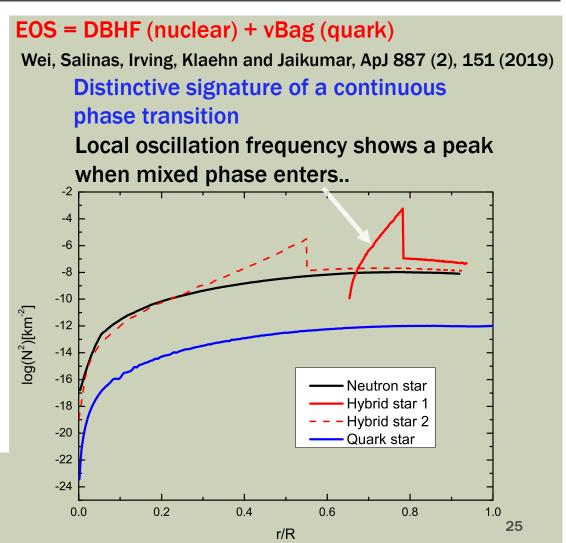
MIXED PHASE IDENTIFICATION



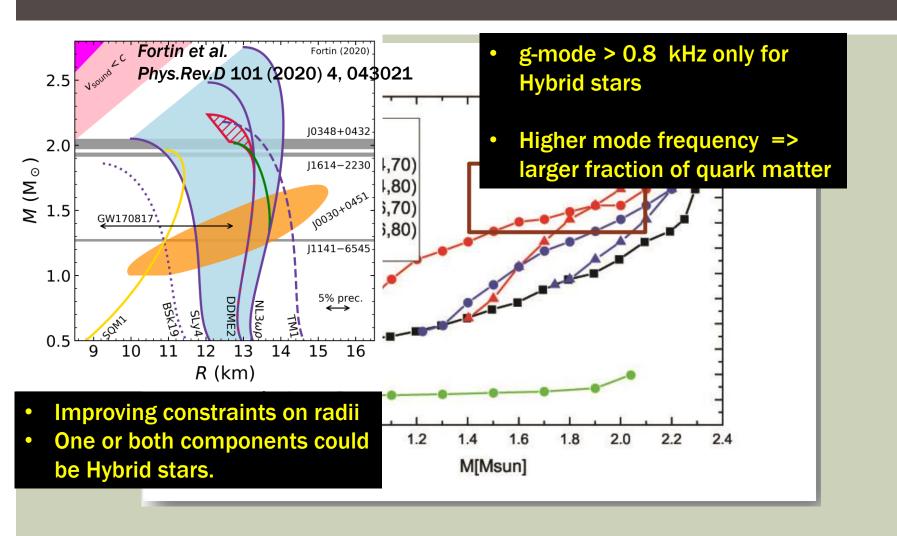
QUARK-HADRON MIXED PHASE



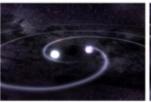
 Mixed phase is preferred if surface tension between Quark/hadron matter is small

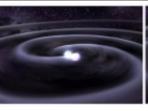


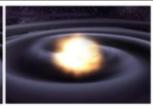
IDENTIFYING A MIXED PHASE



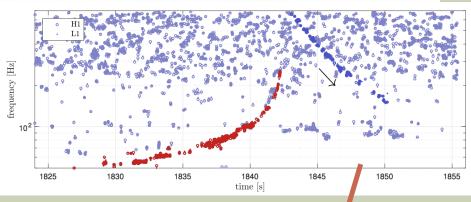
OBSERVATIONAL OUTLOOK







GW170817: A global astronomical event



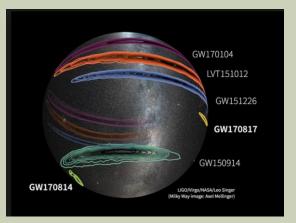
Spectrogram of GW170817

(Abbott et al. PRL 119, 161101 (2017))

$$f_m(t) = A(t_c - t)^{-3/8}$$
 $(t < t_c)$

$$M_{\mathrm{chirp}} \approx 1.1382 F(e)^{-3/5} M_{\odot} \approx 1.188 M_{\odot}$$

$$D = \frac{5}{96\pi^2} \frac{c}{h} \frac{f_{\mathrm{GW}}}{\dot{f}_{\mathrm{GW}}^3} \longrightarrow$$



G-MODE DAMPING

lacksquare Neutrino damping ($\delta\mu(n_B,x_e)=\mu_n-\mu_p-\mu_e$)

$$\tau_{\beta}(\mathrm{yr}) \approx 8.2 \, T_9^{-4} \left(\frac{n_{\mathrm{sat}}}{n}\right)^{2/3} \frac{1}{(\delta \mu/\mathrm{MeV})}$$

Shear damping

$$au_{\rm visc}({\rm yr}) \sim \frac{L^2}{\nu} \approx 1.5 \times 10^3 L_6^2 T_9^{5/3} \left(\frac{n_{\rm sat}}{n}\right)^{5/9}$$

GW damping (growth)

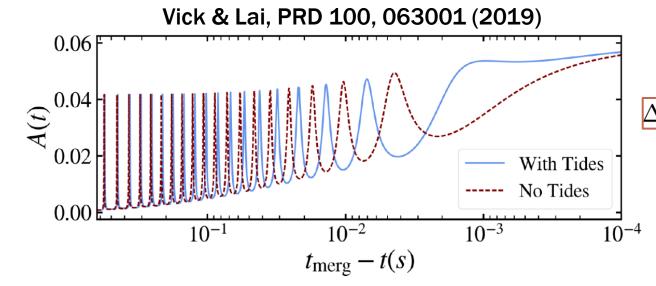
$$\tau_{\text{gw}}(\text{yr}) \sim \frac{1+\mathcal{E}}{25} \hat{\omega}_i^{-5} \hat{\omega}_r \frac{R_{10}^4}{M_{1.4}^3} \left(\frac{10^{-4}}{\delta D_{22}}\right)^2$$

$$\tau = (\tau_{\beta}^{-1} + \tau_{\text{visc}}^{-1} + \tau_{\text{gw}}^{-1})^{-1}$$

 $\tau < 0$ for instability

G-mode can be driven unstable in rotating stars if 0.1 < T9 < 10 and $\omega_{
m rot} > 2\omega_g$

DETECTION PROSPECTS



 $\Delta \phi_{\rm stat} \approx \sqrt{D - 1/({
m SNR})}$

Example of phase shift due to *f*-mode oscillations (Vick 2019)

$$SNR \geq 30\,,
onumber \ f = \omega/(2\pi) pprox 0.5 {
m kHz}$$

$$\Delta\Phi(\tau) \approx 2 \times 10^{-2} \left[\frac{0.33}{\tau^{3/8}} - 1 \right] \left(\frac{\omega_g}{2\omega_{\rm dyn}} \right)^{1/3} \left(\frac{S}{10^{-2}} \right)^2$$

Single Detector : tens of Mpc Network : hundreds of Mpc

CONCLUSIONS

❖ Non-radial modes of compact stars carry imprints of the phase of matter through resonant excitation frequencies

- g-modes can probe stratification : mixed phase / crust of neutron stars
- **❖** Oscillation modes as or more sensitive to composition than tidal polarizability (but may need continuous wave sources)
- Detection of oscillation modes is worth pursuing with improved sensitivity and more detectors