The peculiar behavior of stationary and accelerating vortices

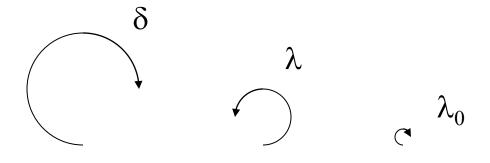
Co-conspirators

- Aline J. Cotel
- Olivia R. Dawson
- Matthias Bauer
- Greg Balle
- J. A. Gjestvang
- N. N. Ramkhelawan
- Prateek Ranjan
- Partial support from ONR

Which has the greater entrainment rate?

Vertical impinging jet (Cotel)

Intrinsic velocity ratio W/V


Entrainment hypothesis of Morton, Taylor, and Turner

$$v_e = const. \frac{\delta}{\tau_{\delta}}$$

Generalized entrainment velocity

$$v_e = const. \frac{\lambda_e}{ au_{\lambda_e}}$$

Flat interface

$$v_e = const. (D\tau)^{1/2}/\tau$$

$$\tau = ? \qquad \begin{array}{c} \tau_\delta \text{ if persistent} \\ \tau_{\lambda 0} \text{ if nonpersistent} \end{array}$$

What kind of surface?

Quick Time™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

von Karman wake (Balle)

Quick Time™ and a TIFF (LZW) decompressor are needed to see this picture.

(Nearly) streamwise vortices

wavy walls (Dawson)

upstream VG's

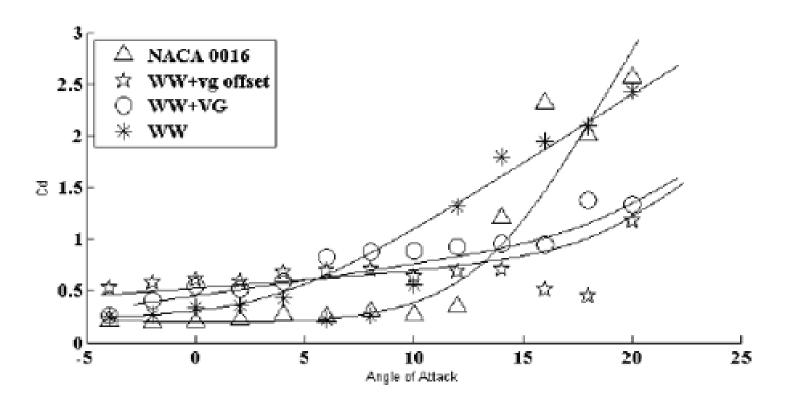
Quick Time™ and a TIFF (LZW) decompressor are needed to see this picture.

Turbulent intermittency over one wavelength (Bauer)

Sketch of secondary flow (Dawson)

von Karman wake

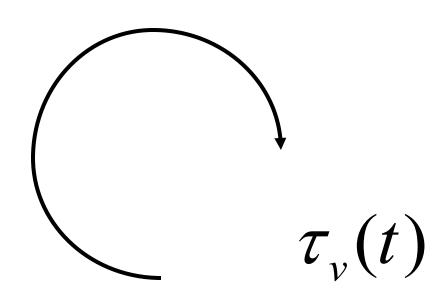
Quick Time™ and a TIFF (LZW) decompressor are needed to see this picture.


Kelvin's cat's eyes

Quick Time™ and a TIFF (LZW) decompressor are needed to see this picture. Quick Time™ and a TIFF (LZW) decompressor are needed to see this picture.

Quick Time™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

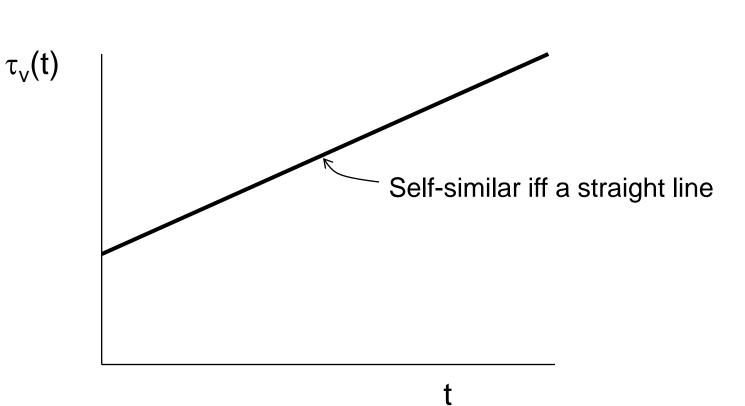


Ranjan 2013

Conclusion - Part 1

- Stationary vortices behave differently than nonstationary ones
- Stratified entrainment
- Relaminarization of a turbulent boundary layer

Accelerating vortices


Brown & Roshko shear layer

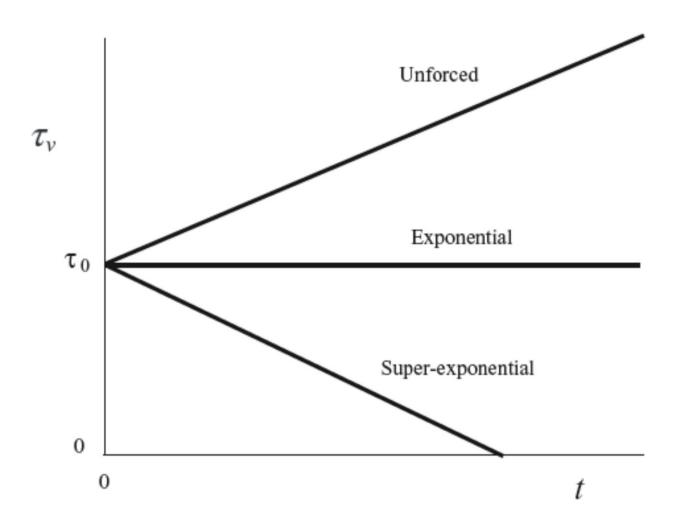
QuickTime™ and a Sorenson Video 3 decompressor are needed to see this picture.

Chemically-reacting shear layer

QuickTime™ and a Sorenson Video decompressor are needed to see this picture.

Evolution of ordinary turbulence

Basic idea



forcing function

$$\tau_{v}(t) \rightarrow \tau$$

 $\tau_{v}(t) \rightarrow \tau$ e-folding time of acceleration

Self-similar turbulence

Exponential jet (Zhang & Johari)

Velocity time histories

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

What if the e-folding time is itself a function of time?

$$\tau_{v} = \tau = \tau_{0} - \alpha t$$

lpha acceleration parameter

$$e^{rac{t}{ au_0-lpha t}}$$

Self-similar turbulence

Conserved quantity Q

$$[Q] = \frac{length^m}{time^n}$$

$$Q = Q_0 e^{\left[t/(\tau_0 - \alpha t)\right]}$$

Dissipation rate

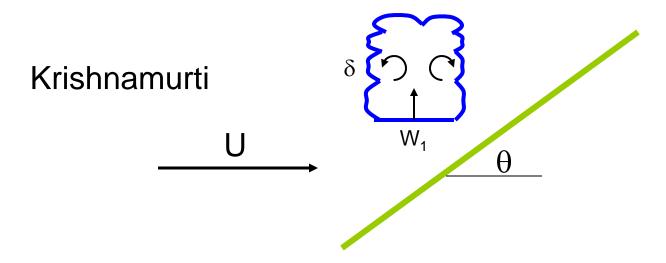
$$D = const.Q^{2/m} \tau_v^{-(3-2n/m)}$$
$$\beta = -(3-2n/m)$$
$$\frac{dD}{D} = \frac{d\alpha}{\beta}$$

$$D = exp[(\alpha - \alpha^*)/\beta]$$

flow	Q	m	n	β
shear layer	ΔU	1	1	-1
round jet	$\Delta U^2 \delta^2$	4	2	-2
round plume	g'ΔUδ²	4	3	-3/2
Rayleigh- Taylor	g'	1	2	1
inertial cascade	V_{λ}^{3}/λ	2	3	0

Exponential jet

Effect of α on entrainment


Ssor

Effect of acceleration on a jet

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Accelerating plume


Critical slope for orographic rain

$$\alpha = [1 + (U/W_1) \tan \theta](\delta/\Delta z_e)$$

Also pre-humidifying air for subsequent moist convection

Volcano

Dissipation rate

$$D = const.Q^{2/m} \tau_v^{-(3-2n/m)}$$
$$\beta = -(3-2n/m)$$
$$\frac{dD}{D} = \frac{d\alpha}{\beta}$$

$$D = exp[(\alpha - \alpha^*)/\beta]$$

flow	Q	m	n	β
shear layer	ΔU	1	1	-1
round jet	$\Delta U^2 \delta^2$	4	2	-2
round plume	g'ΔUδ²	4	3	-3/2
Rayleigh- Taylor	g'	1	2	1
inertial cascade	v_{λ}^{3}/λ	2	3	0

 β < 0 for all flows except Rayleigh-Taylor and inertial cascade

Accelerating Rayleigh-Taylor

Under large acceleration, vortex becomes stationary

sor

$$\lim_{\alpha \to \infty} \frac{W}{V} \to \infty$$

Conclusion - Part 2

- Stationary vortices behave differently than nonstationary ones
- Stratified entrainment
- Relaminarization of a turbulent boundary layer
- Acceleration inhibits entrainment*

^{*}except for Rayleigh-Taylor and inertial cascade