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Important Questions

Penrose diagrams of extremal black holes are very
different from the non-extremal ones.

The question that has intrigued relativists over many
years is whether extremal black holes are classically
stable under linearized perturbations.

How does a small initial perturbation evolve at late
times in an extremal black hole background?

How to reconcile this with firewall/fuzzball proposals?
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Motivation

Extreme black holes have minimum energy for a given
charge and angular momentum.

However all of them have a subtle instability.

A hint of this instability comes from the fact that test
particles encounter null singularity just as they cross the
event horizon of extremal black holes. Marolf 2010
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Motivation

This idea is made precise by Aretakis.

On the horizon some of the derivatives of the scalar
perturbation blow up, leading to an instability known as
Aretakis instability. Aretakis ’07; Lucietti et. al. ’12

This does not happen for non-extremal black holes.
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Motivation

In 1972 Price showed that when a Schwarzschild black
hole is perturbed by a massless scalar field, at late times
the perturbation decays as an inverse polynomial power
in the Schwarzschild time t.

Price’s law was later generalised and power law tails
were obtained in u and v coordinates and for other
black hole solutions.

The study of late time tails are important in
understanding the no-hair theorems and internal
structure of black holes.

In this talk I will focus on Aretakis instability and
Price’s law in case of extremal Reissner-Nordström
black hole in four space-time dimensions.



Motivation

In 1972 Price showed that when a Schwarzschild black
hole is perturbed by a massless scalar field, at late times
the perturbation decays as an inverse polynomial power
in the Schwarzschild time t.

Price’s law was later generalised and power law tails
were obtained in u and v coordinates and for other
black hole solutions.

The study of late time tails are important in
understanding the no-hair theorems and internal
structure of black holes.

In this talk I will focus on Aretakis instability and
Price’s law in case of extremal Reissner-Nordström
black hole in four space-time dimensions.



Motivation

In 1972 Price showed that when a Schwarzschild black
hole is perturbed by a massless scalar field, at late times
the perturbation decays as an inverse polynomial power
in the Schwarzschild time t.

Price’s law was later generalised and power law tails
were obtained in u and v coordinates and for other
black hole solutions.

The study of late time tails are important in
understanding the no-hair theorems and internal
structure of black holes.

In this talk I will focus on Aretakis instability and
Price’s law in case of extremal Reissner-Nordström
black hole in four space-time dimensions.



Motivation

In 1972 Price showed that when a Schwarzschild black
hole is perturbed by a massless scalar field, at late times
the perturbation decays as an inverse polynomial power
in the Schwarzschild time t.

Price’s law was later generalised and power law tails
were obtained in u and v coordinates and for other
black hole solutions.

The study of late time tails are important in
understanding the no-hair theorems and internal
structure of black holes.

In this talk I will focus on Aretakis instability and
Price’s law in case of extremal Reissner-Nordström
black hole in four space-time dimensions.



On Late Time
Tails in an

Extreme Reissner-
Nordström Black
Hole: Frequency
Domain Analysis

Motivation

Outline

Aretakis Instability

Couch-Torrence
Symmetry

Late time tails

First order
correction to late
time tails

Summary and
Open problems

Outline of our work

We study the leading order late time decay tails of
massless scalar perturbations outside an extreme
Reissner-Nordström (ERN) black hole using the
frequency domain approach.

We find that initial perturbations with generic regular
behaviour across the horizon decays at late times as
t−2l−2 near timelike infinity (t � r∗) and as u−l−1 near
future null infinity (u � r∗).

Extreme Reissner-Nordström black hole enjoys a special
symmetry. We make use of this symmetry in our
analysis.
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Aretakis Instability

Dafermos, Rodnianski 2005 showed that in case of
non-extremal black holes a scalar perturbation and all
its derivatives decay with time on and outside the event
horizon.

A similar analysis for extremal black hole leads to a
conservation law on the horizon.

This conservation law lies at the heart of Aretakis
Instability.
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Aretakis Instability

Consider extreme RN in ingoing Eddington-Finkelstein
coordinates

ds2 = −
(

1− M

r

)2

dv2 + 2dvdr + r2dΩ2. (1)

Perturb the black hole by a massless scalar field that
satisfies

�Φ = 0 (2)

in the fixed black hole background.

Mode decomposition

Φ =
1

r

∑
l ,m

ψl(r)Ylm(θ, φ)e−iωt =
∑
lm

φl(v , r)Ylm(θ, ϕ).

(3)
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Aretakis Instability

Evaluate the wave equation on the horizon at r = M for
l = 0 mode

�Φ

∣∣∣∣
H+

=
∂

∂v

(
∂rΦ +

1

M
Φ

)
= 0. (4)

For spherically symmetric Φ,

I0(Φ) =

(
∂rΦ +

1

M
Φ

)
is independent of v , conserved along the horizon.

This is a Aretakis constant.

Since the combination is conserved both Φ and ∂rΦ
cannot decay on H+.

Aretakis showed that Φ decays, hence ∂rΦ does not
decay.
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Aretakis Instability

(∂rΦ)r=M → I0 as v →∞.

Stress tensor of scalar seen by an infalling observer is
Trr = (∂rΦ)2, i.e., there is an energy present at H+ at
all times. This is related to the fact that the surface
gravity for extremal black holes is zero.

Act with one more radial derivative on the wave
equation

∂r (�Φ)

∣∣∣∣
H+

=
∂

∂v

(
∂2r Φ +

2

M
∂rΦ

)
+

1

M2
∂rΦ = 0.

(5)

At late times as v →∞ , ∂2r Φ

∣∣∣∣
H+

∼ − I0
M2 v →∞ .
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Aretakis Constants

For mode l apply ∂ lr on the wave equation, the
conserved Aretakis constants on the horizon are

Al [φl ] =
M l

(l + 1)!
∂lr [r∂r (rφl)]

∣∣∣∣
r=M

. (6)

For mode l , ∂l+2
r φl ∼ I0v

l+1 →∞ as v →∞.

If the solution of the wave equation near the horizon is

φl(v , r) =
1

r

∞∑
k=0

ck(v)
( r

M
− 1
)k
, (7)

Aretakis constants are Al = cl+1 + l
l+1cl . Ori ’13; Sela

’15
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Couch-Torrence Symmetry

For four dimensional extreme Reissner-Nordström black
hole, the effective potential remains invariant under
r∗ → −r∗ i.e. V (r∗) = V (−r∗).

This is known as the Couch-Torrence (CT) Symmetry.

Under CT Symmetry u = t − r∗ and v = t + r∗
coordinates get interchanged (u ↔ v).

Hence scattering dynamics near the horizon can be
mapped to scattering dynamics near infinity.

On the metric CT symmetry acts as a discrete
conformal isometry

T∗(g) = Ω2g , where Ω =
M

r −M
. (8)

All these properties of CT symmetry are extremely
useful for our analysis.
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Couch-Torrence Symmetry

For four dimensional extreme Reissner-Nordström black
hole, the effective potential remains invariant under
r∗ → −r∗ i.e. V (r∗) = V (−r∗).

This is known as the Couch-Torrence (CT) Symmetry.

Under CT Symmetry u = t − r∗ and v = t + r∗
coordinates get interchanged (u ↔ v).

Hence scattering dynamics near the horizon can be
mapped to scattering dynamics near infinity.

On the metric CT symmetry acts as a discrete
conformal isometry

T∗(g) = Ω2g , where Ω =
M

r −M
. (8)

All these properties of CT symmetry are extremely
useful for our analysis.



On Late Time
Tails in an

Extreme Reissner-
Nordström Black
Hole: Frequency
Domain Analysis

Motivation

Outline

Aretakis Instability

Couch-Torrence
Symmetry

Late time tails

First order
correction to late
time tails

Summary and
Open problems

Newman-Penrose Constants

Aretakis constants are surprising feature of extremal
black holes.

A natural question to ask is what is the Couch-Torrence
dual of Aretakis constants. Bizon, Friedrich 2012

Fortunately there is a precise answer to this question.

The answer is Newman-Penrose constants.
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Newman-Penrose Constants

The CT dual of Aretakis constants are Newman-Penrose
constants at null infinity. Newman and Penrose 1968

In outgoing Eddington-Finkelstein coordinates the
extreme Reissner-Nordström metric is

ds2 = −
(

1− M

r

)2

du2 − 2dudr + r2dΩ2. (9)

Again expand the scalar in spherical harmonics in these
coordinates as Φ(u, r , θ, ϕ) =

∑
lm φl(u, r)Ylm(θ, ϕ).

We get equations for the mode functions

−2r∂u∂r (rφl)+∂r ((r−M)2∂rφl)− l(l+1)φl = 0. (10)

Consider the solution of the wave equation near infinity

φl(u, r) =
1

r

∞∑
k=0

dk(u)

(
M

r

)k

. (11)
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Inserting this expansion into the wave equation and
looking at successive inverse powers of r gives equations
that involve dk(u) and its derivatives.

The last equation implies conservation of

Nl :=
1

l + 1

l+1∑
i=1

(−1)l+i−1i

(
l

i − 1

)
di , (12)

at null infinity, i.e., ∂uNl = 0.

These are examples of Newman-Penrose constants.
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Relation between Aretakis and Newman-Penrose
constants

We have matched the Newman-Penrose constants
exactly to Aretakis constants under CT symmetry.
Bhattacharjee, Chow, BC, Paul and Virmani

Let us apply the CT mapping on the near horizon
solution to get solution near infinity

φl = 1
r

(
c0 + c1

M
r + (c1 + c2)

(
M
r

)2
+(c1 + 2c2 + c3)

(
M
r

)3
+ . . .

)
. (13)

Comparing this solution (13) with (11) we find the
relation between d and c coefficients.
Plugging in the expression for the Newman-Penrose
constants we have

Nl = cl+1 +
l

l + 1
cl , (14)

that is nothing but the Aretakis constant Al .
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Late time tails

We are interested in understanding how generic
perturbation decays over Extreme Reissner-Nordström
black hole background.

The wave equation for the mode function is(
∂2t − ∂2r∗ + Vl

)
ψl = 0. (15)

The effective potential Vl is given by

Vl(r) =

(
1− M

r

)2 [2M

r3

(
1− M

r

)
+

l(l + 1)

r2

]
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Late time tails

i0

J +

u
=

0
v
=

0

i+

H+

The initial data is composed of two functions ψv
l (v)

and ψu
l (u). We take these functions of the form (and

restrict to this case only)

ψv
l (v) = ψl(u = 0, v) = d̂l

R l

r l
+ compactly supported data,

ψu
l (u) = ψl(u, v = 0) = c0 + c1

( r

M
− 1
)

+ c2
( r

M
− 1
)2

+ . . . .



Late time tails

Due to the linearity, split the problem in two parts:
(i) ψv

l (v) = ψl(u = 0, v) 6= 0, ψu
l (u) = 0,

(ii) ψu
l (u) = ψl(u, v = 0) 6= 0, ψv

l (v) = 0.

Finally add their contributions to obtain the late time
tails.

Note that the initial data is horizon penetrating and
extending to null infinity.

Hence in general it has non-zero Aretakis and
Newman-Penrose constants.
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Late time tails

We use the CT symmetry on ψu(u) to obtain

ψv
l (v) = ĉ0+ ĉ1

R

r
+ ĉ2

R2

r2
+ . . .+ ĉl

R l

r l
+ ĉl+1

R l+1

r l+1
+ . . . .

(16)

Using linearity, the effective problem that we need to
analyse becomes,

ψv
l (v) =ĉ0 + ĉ1

R

r
+ ĉ2

R2

r2
+ . . .+ (ĉl + d̂l)

R l

r l
+ ĉl+1

R l+1

r l+1
+ . . .

+ compactly supported data, (17)

with ψu
l (u) = 0.
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Late time tails

It is believed that the late time tail arises due to
backscattering from the weakly curved asymptotic
region. Price ’71, Klauder ’72, Gundlach ’93

For an initial data eq (17), there is a contribution to the
late time tail in an ERN background that is not due to
the curvature of the spacetime.

The term ĉl+1
R l+1

r l+1 results in a leading order tail even in
flat space (Sela).
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Late time tails
The wave equation in flat space is(

∂2r − ∂2t −
l(l + 1)

r2

)
ψl(t, r) = 0. (18)

The Fourier transform of the field ψl(t, r),

ψl(ω, r) =

∫ ∞
−∞

e iωtψl(t, r)dt, (19)

satisfies the equation(
−ω2 − ∂2r +

l(l + 1)

r2

)
ψl(ω, r) = 0. (20)

The general solution to this equation is

ψl(ω, r) = A(ω)
√
rJl+1/2(ωr) + B(ω)

√
rYl+1/2(ωr).
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Late time tails

To obtain regular solutions at r = 0 we must set
B(ω) = 0. Thus, we get

ψl(ω, r) = A(ω)
√
rJl+1/2(ωr). (21)

The solution in the time domain is simply the inverse
Fourier transform,

ψl(t, r) =
1

2π

√
r

∫ ∞
−∞

A(ω)Jl+1/2(ωr)e−iωtdω. (22)

Make the ansatz A(ω) = 2πA0 ω
p. Solve for ψl(t, r)

and match the resulting answer at u = 0.

This gives p = k − 1/2, and fixes the constant A0.
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Late time tails

Finally we obtain

ψl(t, r) =− ĉkR
k2k+1Γ(k + 1)

π(2l + 1)!!
sin(kπ) Γ(l − k + 1)

r l+1 t−(k+l+1) F

(
l + k + 2

2
,
l + k + 1

2
; l +

3

2
;
r2

t2

)
.

(23)

For k ≤ l this expression vanishes due to the sin(kπ)
factor. For k ≥ l + 1, Γ(l − k + 1) develops a pole that
exactly cancels with the zero of the sin function and
gives a finite result.

The leading contribution to the late time tail comes
from k = l + 1.
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The leading contribution to the late time tail comes
from k = l + 1.



Late time tails

At timelike infinity,

ψ(t, r |t � r) ∼ ĉl+1t
−(2l+2). (24)

Near future null infinity

ψl(t, r |u � r) ∼ ĉl+1u
−l−1. (25)

Perfect match with Ori ; Sela including all prefactors,
our analysis is much simpler.

Since flat space is conformal to AdS2 × S2, the above
results can be related to an AdS2 analysis. Lucietti,
Murata, Reall and Tanahashi 2012
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Contributions due to asymptotic curvature of
spacetime

The propagation of linearized scalar waves on black hole
backgrounds is described by the Klein-Gordon (KG)
equation with an effective potential[

∂2t − ∂2r∗ + V (r∗)
]
φ(r∗, t) = 0. (26)

The effective potential V (r∗) describes the scattering of
φ by the background curvature, r∗ is the tortoise
coordinate.

The Fourier transform G̃ (r∗, r
′
∗;ω) of the retarded

Green’s function for the wave operator satisfies[
−ω2 − ∂2r∗ + V (r∗)

]
G̃ (r∗, r

′
∗;ω) = 0. (27)

G̃ (r∗, r
′
∗;ω) is analytic in the upper half of the complex

ω plane.
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Contributions due to asymptotic curvature of
spacetime

Prompt contribution: Contribution to G coming from
the large semicircle corresponds to short time response.

Quasinormal Ringing: Contribution comes from the
poles in G̃ (r∗, r

′
∗;ω).

Late time tails: Contribution comes from the branch
cut of G̃ (r∗, r

′
∗;ω) along the negative imaginary axis in

the complex ω plane.
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Contributions due to asymptotic curvature of
spacetime

In order to construct the Green’s function we look at
solutions of the wave equation satisfying the following
boundary conditions
ψ̃l(r∗, ω)→ e iωr∗ as r∗ →∞,
ψ̃l(r∗, ω)→ e−iωr∗ as r∗ → −∞.

For a second order ODE with homogeneous boundary
conditions, the Green’s function can be uniquely
constructed using two auxiliary functions f (r∗, ω) and
g(r∗, ω), where f (r∗, ω) satisfies the left boundary
condition and g(r∗, ω) satisfies the right boundary
condition.
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Contributions due to asymptotic curvature of
spacetime

The Green’s function is given by

G̃ (r∗, r
′
∗;ω) =

{
f (r∗,ω)g(r ′∗,ω)

W (ω) , if r∗ < r ′∗
f (r ′∗,ω)g(r∗,ω)

W (ω) , if r∗ > r ′∗
(28)

where W (ω) is the Wronskian of f and g .

The late time tails come from the branch cut of
G̃ (r∗, r

′
∗;ω).

In the low-frequency asymptotic expansion Andersson

GC (r∗, r
′
∗, t) = −2πiM

√
r∗r ′∗

∫ −i∞
0

ω Jl+1/2(ωr∗) Jl+1/2(ωr ′∗) e−iωtdω ,

ψC
l (r∗, t) = −

∫ ∞
0

∂tG
C (r∗, r

′
∗, t) ψl(0, r ′∗) dr ′∗. (29)
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Contributions due to asymptotic curvature of
spacetime

At timelike infinity, ωr∗ � 1 and we get

ψl(t, r∗|t � r∗ � M) ∼ µlMt−2l−2. (30)

Near null infinity, ωr∗ � 1, hence we get

ψl(t, r∗) ∼ µlMu−l−1. (31)
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Summary

We study the leading order late time decay tails of
massless scalar perturbations outside an extreme
Reissner-Nordström (ERN) black hole using the
frequency domain approach.

We find that initial perturbations with generic regular
behaviour across the horizon decays at late times as
t−2l−2 near timelike infinity (t � r∗) and as u−l−1 near
future null infinity (u � r∗).

The inversion map maps the decay behaviour near
future null infinity to the decay behaviour v−l−1 near
the horizon.

Using the CT conformal isometry, we relate higher
multipole Aretakis and Newman-Penrose constants for a
massless scalar in an ERN black hole background. The
relations involve Pascal matrices. We find new identities
for these matrices.
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Open problems

Our analysis is valid in the asymptotic regions, either
near infinity or near the horizon. It will be interesting to
compute the correct radial dependence of the tail in full
generality.

It will be useful to relate our analysis to the study of
late time tails of the asymptotic gravitational radiation
originating from scattering of two ERN black holes.
Camps, Hadar, Manton

Eperon, Reall, Santos have shown that waves on a
supersymmetric fuzzball decay differently than on an
extremal black hole. It will be interesting to understand
Price’s law from a microscopic CFT analysis.
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