> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Ribbon 2-tubes and automorphisms of the reduced free group

Benjamin AUDOUX

Aix-Marseille Université

December 18th, 2013

joint work with J-B. Meilhan E. Wagner

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ribbon 2-tubes

Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

> Benjamin AUDOUX

Ribbon 2–tubes

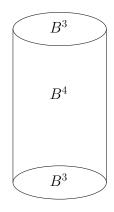
Welded diagrams

Self-homotopy

Classification

Ribbon 2-tubes

We consider B^4 seen as $B^3 \times I$.



> Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

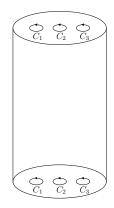
Self-homotopy

Classification

Ribbon 2-tubes

We consider B^4 seen as $B^3 \times I$.

We fix *n* disjoint and unlinked oriented circles C_1, \dots, C_n in B^3 .



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

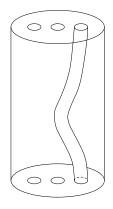
Ribbon 2-tubes

We consider B^4 seen as $B^3 \times I$.

We fix *n* disjoint and unlinked oriented circles C_1, \dots, C_n in B^3 .

We consider embedded annuli T_1, \dots, T_n s.t.

•
$$\partial T_i = C_i \times \{0,1\};$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

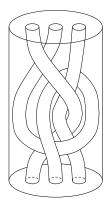
Ribbon 2-tubes

We consider B^4 seen as $B^3 \times I$.

We fix *n* disjoint and unlinked oriented circles C_1, \dots, C_n in B^3 .

We consider embedded annuli T_1, \dots, T_n s.t.

•
$$\partial T_i = C_i \times \{0,1\};$$



> Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

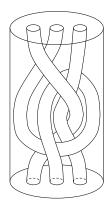
Ribbon 2-tubes

We consider B^4 seen as $B^3 \times I$.

We fix *n* disjoint and unlinked oriented circles C_1, \dots, C_n in B^3 .

We consider embedded annuli T_1, \dots, T_n s.t.

- $\partial T_i = C_i \times \{0,1\};$
- they admit a ribbon filling



> Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Ribbon 2-tubes

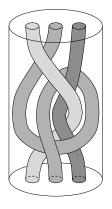
We consider B^4 seen as $B^3 \times I$.

We fix *n* disjoint and unlinked oriented circles C_1, \dots, C_n in B^3 .

We consider embedded annuli T_1, \dots, T_n s.t.

- $\partial T_i = C_i \times \{0,1\};$
- they admit a ribbon filling, that is immersed 3-balls B_1, \dots, B_n s.t.

•
$$\partial B_i = T_i;$$



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

> Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

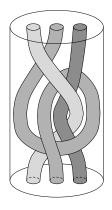
```
Ribbon 2-tubes
```

We consider B^4 seen as $B^3 \times I$.

We fix *n* disjoint and unlinked oriented circles C_1, \dots, C_n in B^3 .

We consider embedded annuli T_1, \cdots, T_n s.t.

- $\partial T_i = C_i \times \{0,1\};$
- they admit a ribbon filling, that is immersed 3-balls B_1, \dots, B_n s.t.
 - $\partial B_i = T_i;$
 - the singular set is a finite union of ribbon disks.



> Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

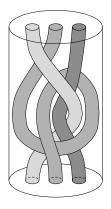
```
Ribbon 2-tubes
```

We consider B^4 seen as $B^3 \times I$.

We fix *n* disjoint and unlinked oriented circles C_1, \dots, C_n in B^3 .

We consider embedded annuli T_1, \cdots, T_n s.t.

- $\partial T_i = C_i \times \{0,1\};$
- they admit a ribbon filling, that is immersed 3-balls B_1, \dots, B_n s.t.
 - $\partial B_i = T_i;$
 - the singular set is a finite union of ribbon disks.



> Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Ribbon 2-tubes

We consider B^4 seen as $B^3 \times I$.

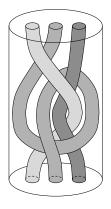
We fix *n* disjoint and unlinked oriented circles C_1, \dots, C_n in B^3 .

We consider embedded annuli T_1, \dots, T_n s.t.

- $\partial T_i = C_i \times \{0,1\};$
- they admit a ribbon filling, that is immersed 3-balls B_1, \dots, B_n s.t.
 - $\partial B_i = T_i;$
 - the singular set is a finite union of ribbon disks.

Definition

We define rT_n as the monoid of ribbon 2-tubes up to isotopy.



> Benjamin AUDOUX

Ribbon disk singularities

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Definition A ribbon disk is a disk $D \in B_i \cap B_i$ of double points s.t.

> Benjamin AUDOUX

Ribbon disk singularities

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ribbon 2-tubes

Welded diagrams

Self-homotopy

Classification

Definition

A ribbon disk is a disk $D \in B_i \cap B_j$ of double points s.t.

• $\mathring{D} \subset \mathring{B}_i$ and ∂D is essential in $\partial B_i = T_i$;

> Benjamin AUDOUX

Ribbon disk singularities

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ribbon 2-tubes

Welded diagrams

Self-homotopy

Classification

Definition

A ribbon disk is a disk $D \in B_i \cap B_j$ of double points s.t.

- $\mathring{D} \subset \mathring{B}_i$ and ∂D is essential in $\partial B_i = T_i$;
- $D \subset \mathring{B}_j$.

Ribbon		
2-tubes and		
reduced free		
group		

Benjamin AUDOUX

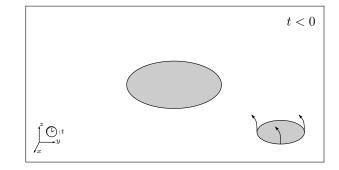
Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Ribbon disk singularities



Benjamin Audoux

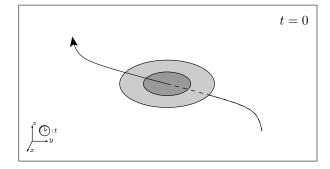
Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Ribbon disk singularities



Benjamin AUDOUX

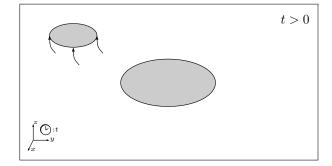
Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Ribbon disk singularities



> Benjamin AUDOUX

Ribbon 2-tubes

Welded diagrams

Self-homotopy

Classification

Projection in B^3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Can it be nicely projected in B^3 ?

Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Projection in B^3

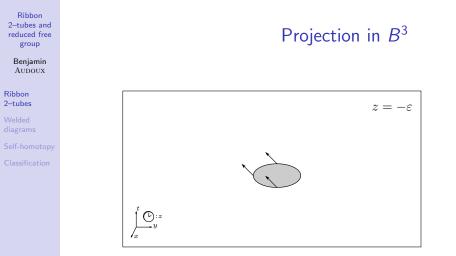
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Can it be nicely projected in B^3 ?

In order to project along the height z, let's represent it as the time parameter.

Ribbon 2-tubes and reduced free group Benjamin AUDOUX	Projection in B^3	
Ribbon 2–tubes	z < 0	
Welded diagrams		
Self-homotopy		
Classification	$\int_{x}^{t} \underbrace{\bigcirc}_{y} z$	

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●



Benjamin AUDOUX

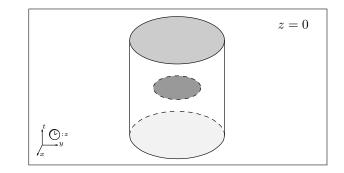
Ribbon 2–tubes

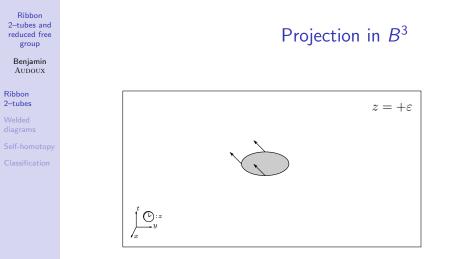
Welded diagrams

Self-homotopy

Classification

Projection in B^3





Ribbon 2-tubes and reduced free group Benjamin AUDOUX	Projection in	<i>B</i> ³
Ribbon 2–tubes		
Welded		» ()
Self-homotopy		
Classification		
	$\int_{x} \underbrace{\bigcup_{y}}_{y} dx$	

Benjamin Audoux

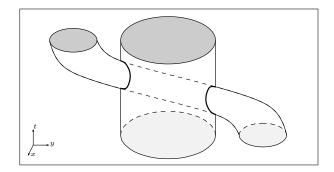
Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Projection in B^3



Benjamin AUDOUX

Ribbon 2–tubes

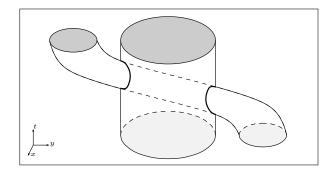
Welded diagrams

Self-homotopy

Classification

Projection in B^3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



We loose the information that whether the flying disk was moving upward or downward.

Benjamin Audoux

Ribbon 2–tubes

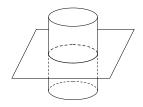
Welded diagrams

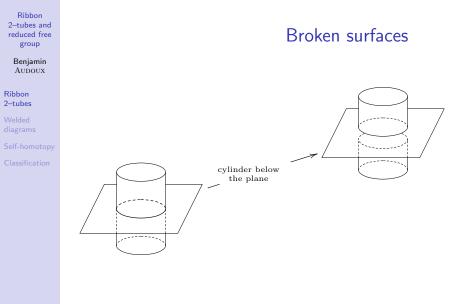
Self-homotopy

Classification

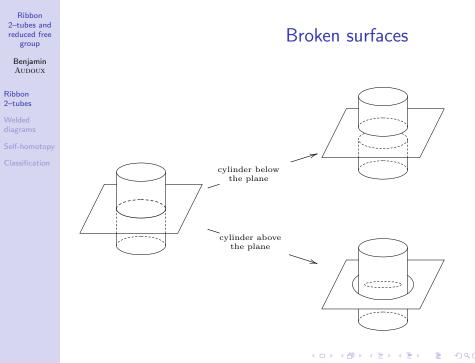
Broken surfaces

(ロ)、





(ロ)、(型)、(E)、(E)、 E) の(の)



Benjamin AUDOUX

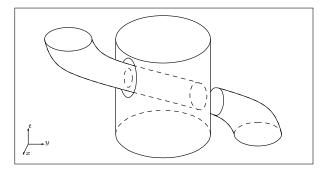
Broken surfaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Welded diagrams

Self-homotopy

Classification



The 3-dimensional projection can be enhanced with over/underpassing decorations.

Benjamin Audoux

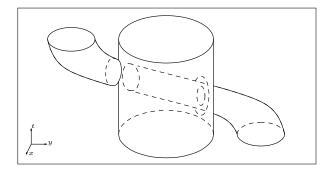
Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Broken surfaces



If the flying disk is moving downward, then the decorations are swapped.

Benjamin AUDOUX

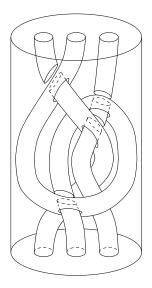
Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Broken surfaces



◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへぐ

> Benjamin AUDOUX

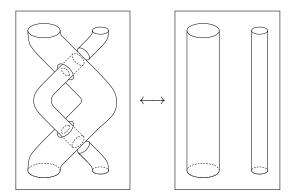
Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Moves on broken surfaces



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

> Benjamin AUDOUX

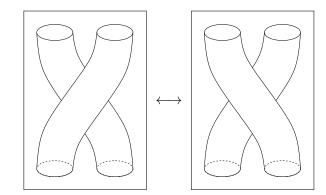
Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Moves on broken surfaces



Benjamin AUDOUX

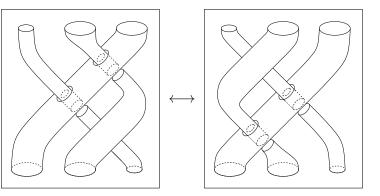
Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Moves on broken surfaces



Benjamin AUDOUX

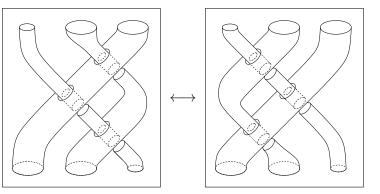
Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Moves on broken surfaces



> Benjamin AUDOUX

Ribbon 2–tubes

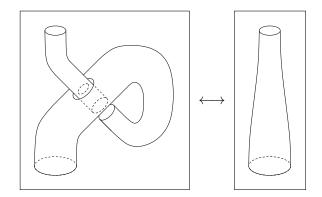
Welded diagrams

Self-homotopy

Classification

Moves on broken surfaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



Benjamin AUDOUX

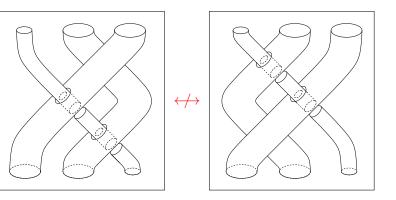
Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Moves on broken surfaces



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Welded diagrams

(ロ)、(型)、(E)、(E)、 E) の(の)

Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

> Benjamin AUDOUX

Welded diagrams

Ribbon 2–tubes

Welded diagrams

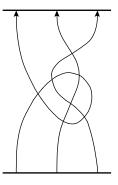
Self-homotopy

Classification

Definition

A (virtual) *diagram* is an immersion of *n* oriented arcs A_1, \dots, A_n in $\mathbb{R} \times I$ s.t.

•
$$\partial A_i = \{i\} \times \{0,1\};$$



Welded diagrams

Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

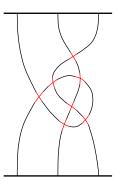
Self-homotopy

Classification

Definition

A (virtual) *diagram* is an immersion of *n* oriented arcs A_1, \dots, A_n in $\mathbb{R} \times I$ s.t.

- $\partial A_i = \{i\} \times \{0,1\};$
- the singular set is a finite number of transverse double points



Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Definition

A (virtual) *diagram* is an immersion of *n* oriented arcs A_1, \dots, A_n in $\mathbb{R} \times I$ s.t.

- $\partial A_i = \{i\} \times \{0,1\};$
- the singular set is a finite number of transverse double points decorated as

Welded diagrams

Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Welded diagrams

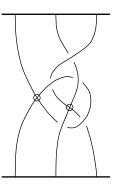
Definition

A (virtual) *diagram* is an immersion of *n* oriented arcs A_1, \dots, A_n in $\mathbb{R} \times I$ s.t.

- $\partial A_i = \{i\} \times \{0,1\};$
- the singular set is a finite number of transverse double points decorated as

Definition

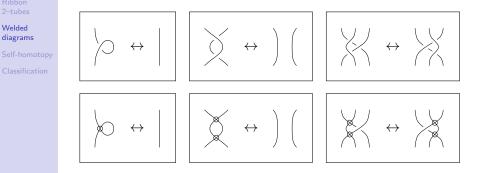
We define wD_n as the monoid of diagrams quotiented by the following relations:



> Benjamin AUDOUX

Welded diagrams

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



Usual and virtual Reidemeister moves

Benjamin AUDOUX

Ribbon 2–tubes

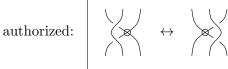
Welded diagrams

Self-homotopy

Classification

Welded diagrams

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



Welded Reidemeister moves

Benjamin AUDOUX

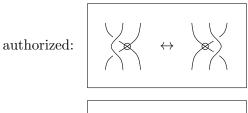
Ribbon 2–tubes

Welded diagrams

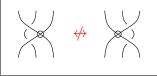
Self-homotopy

Classification

Welded diagrams



still forbidden:



▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

Welded Reidemeister moves

Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

The tube application

> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

 \mapsto

The tube application

> Benjamin AUDOUX

Ribbon 2-tubes

Welded diagrams

Self-homotopy

Classification

The tube application

> Benjamin AUDOUX

Ribbon 2-tubes

Welded diagrams

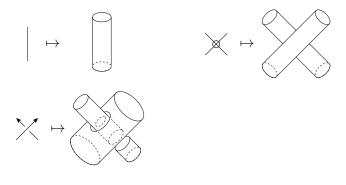
Self-homotopy

Classification

The tube application

イロト 不得 トイヨト イヨト

э



> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

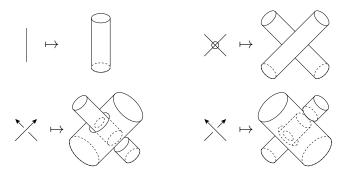
Self-homotopy

Classification

The tube application

イロト 不得 トイヨト イヨト

э



The tube application

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Proposition

This assignment defines a map $Tube : wD_n \rightarrow rT_n$.

The tube application

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Proposition

This assignment defines a map $Tube: wD_n \rightarrow rT_n$.

Proposition (Yanagawa,Satoh) The map Tube is surjective.

> Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

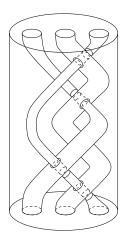
Self-homotopy

Classification

Monotone ribbon 2-tubes

Definition

A ribbon 2-tubes $T \subset B^3 \times I$ is said monotone iff $T \cap (B^3 \times \{t\})$ is always a union of *n* circles.



> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

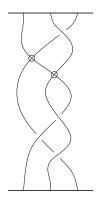
Monotone ribbon 2-tubes

Definition

A ribbon 2-tubes $T \subset B^3 \times I$ is said monotone iff $T \cap (B^3 \times \{t\})$ is always a union of *n* circles.

Definition

A diagram $D \subset \mathbb{R} \times I$ is said to be a *pure* braid iff $D \cap (\mathbb{R} \times \{t\})$ is always a union of n points.



> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Monotone ribbon 2-tubes

Definition

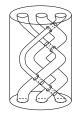
A ribbon 2-tubes $T \subset B^3 \times I$ is said monotone iff $T \cap (B^3 \times \{t\})$ is always a union of *n* circles.

Definition

A diagram $D \subset \mathbb{R} \times I$ is said to be a *pure* braid iff $D \cap (\mathbb{R} \times \{t\})$ is always a union of n points.

Theorem (Brendle-Hatcher)

The map Tube yields an isomorphism between welded pure braids and monotone ribbon 2-tubes.



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Ribbon 2-tubes with only one tube are already hard to understand.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Ribbon 2-tubes with only one tube are already hard to understand.

Interactions of a tube with other tubes appear to be easier than with itself.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Ribbon 2-tubes with only one tube are already hard to understand.

Interactions of a tube with other tubes appear to be easier than with itself.

 \searrow we want to get rid of self-knottedness !

Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Singular ribbon 2-tubes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Singular ribbon 2-tubes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition

Singular ribbon 2-tube are immersions of annuli T_1, \dots, T_n s.t.

- $\partial T_i = C_i \times \{0,1\};$
- they admit a singular ribbon filling.

Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Singular ribbon 2-tubes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition

Singular ribbon 2-tube are immersions of annuli T_1, \dots, T_n s.t.

- $\partial T_i = C_i \times \{0,1\};$
- they admit a singular ribbon filling.

Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Singular ribbon 2-tubes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition

Singular ribbon 2-tube are immersions of annuli T_1, \dots, T_n s.t.

- $\partial T_i = C_i \times \{0,1\};$
- they admit a singular ribbon filling.

Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Singular ribbon 2-tubes

Definition

Singular ribbon 2-tube are immersions of annuli T_1, \cdots, T_n s.t.

- $\partial T_i = C_i \times \{0,1\};$
- they admit a singular ribbon filling, that is immersed 3-balls B_1, \dots, B_n s.t.
 - $\partial B_i = T_i;$
 - the singular set is the union of a finite number of ribbon disks with a singular ribbon disks.

Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Singular ribbon 2-tubes

Definition

Singular ribbon 2-tube are immersions of annuli T_1, \cdots, T_n s.t.

- $\partial T_i = C_i \times \{0,1\};$
- they admit a singular ribbon filling, that is immersed 3-balls B_1, \dots, B_n s.t.
 - $\partial B_i = T_i;$
 - the singular set is the union of a finite number of ribbon disks with a singular ribbon disks.

Benjamin

Singular ribbon disks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Audoux

2-tubes

Welded diagrams

Self-homotopy

Classification

Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Singular ribbon disks

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition (regular ribbon disk)

It is a disk $D \in B_i \cap B_j$ of double points s.t.

- $\mathring{D} \subset \mathring{B}_i$ and ∂D is essential in $\partial B_i = T_i$;
- $D \subset \mathring{B}_j$.

Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Singular ribbon disks

Definition (regular ribbon disk)

It is a disk $D \in B_i \cap B_j$ of double points s.t.

• $\mathring{D} \subset \mathring{B}_i$ and ∂D is essential in $\partial B_i = T_i$;

•
$$D \subset \mathring{B}_j$$
.

Definition (singular ribbon disk)

It is a disk $D \in B_i \cap B_j$ of double points s.t.

• $\mathring{D} \subset \mathring{B}_i$ and ∂D is essential in $\partial B_i = T_i$;

•
$$D \subset \partial B_j = T_j$$
.

Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Singular ribbon disks

Definition (regular ribbon disk)

It is a disk $D \in B_i \cap B_j$ of double points s.t.

- $\mathring{D} \subset \mathring{B}_i$ and ∂D is essential in $\partial B_i = T_i$;
- $D \subset \overset{\mathbf{B}}{B_j}$.

Definition (singular ribbon disk)

It is a disk $D \in B_i \cap B_j$ of double points s.t.

• $\mathring{D} \subset \mathring{B}_i$ and ∂D is essential in $\partial B_i = T_i$;

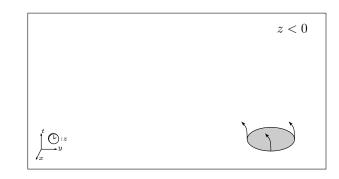
• $D \subset \partial B_j = T_j$.

Ribbon
2-tubes and
reduced free
group

Benjamin AUDOUX

Singular ribbon disks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



2-tubes

Welded diagrams

Self-homotopy

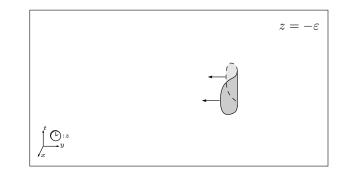
Classification

> Benjamin AUDOUX

Self-homotopy

Singular ribbon disks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

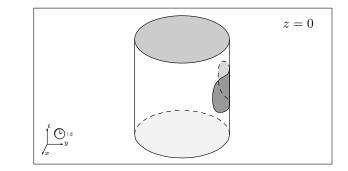


> Benjamin AUDOUX

Self-homotopy

Singular ribbon disks

(ロ)、(型)、(E)、(E)、 E) の(の)



Ribbon
2-tubes and
reduced free
group

Benjamin AUDOUX

Ribbon 2–tubes

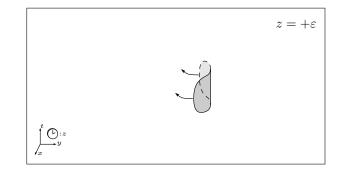
Welded diagrams

Self-homotopy

Classification

Singular ribbon disks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

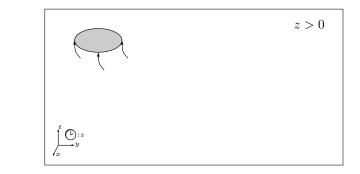


> Benjamin AUDOUX

Self-homotopy

Singular ribbon disks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



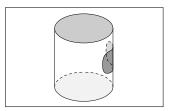
Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

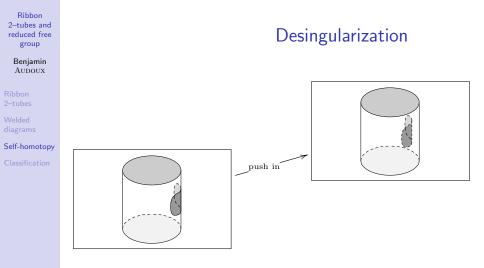
Self-homotopy

Classification

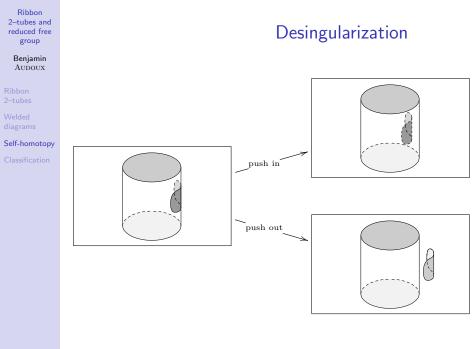


Desingularization

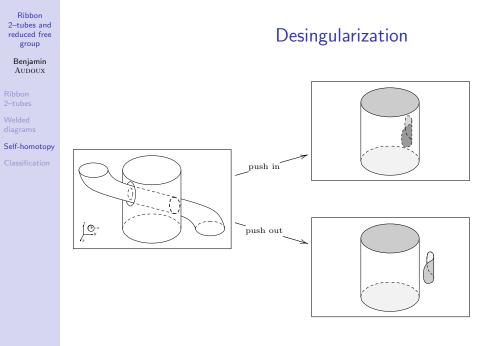
(ロ)、(型)、(E)、(E)、 E) の(の)



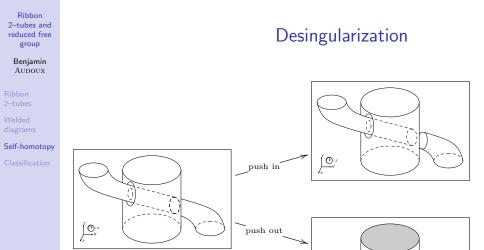
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの





Ribbon 2–tubes and

reduced free group Benjamin

<□> <@> < E> < E> E のQC

Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

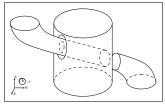
Self-homotopy

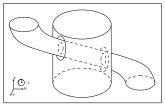
Classification

Definition

An *homotopy* is a path of ribbon 2-tubes which may pass a finite number of times through singular ribbon 2-tubes.

homotopies





э

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

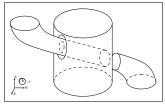
Classification

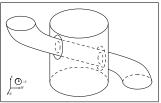
Definition

An *homotopy* is a path of ribbon 2-tubes which may pass a finite number of times through singular ribbon 2-tubes.

It is a *self*-homotopy iff each singular ribbon disk involves twice the same tube.

self-homotopies





◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

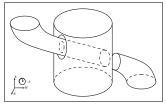
Definition

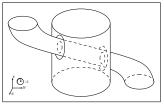
An *homotopy* is a path of ribbon 2-tubes which may pass a finite number of times through singular ribbon 2-tubes.

It is a *self*-homotopy iff each singular ribbon disk involves twice the same tube.

At the level of welded diagrams

self-homotopies





Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

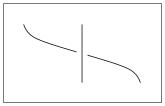
Classification

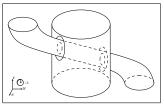
Definition

An *homotopy* is a path of ribbon 2-tubes which may pass a finite number of times through singular ribbon 2-tubes.

It is a *self*-homotopy iff each singular ribbon disk involves twice the same tube.

At the level of welded diagrams





self-homotopies

Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Definition

An *homotopy* is a path of ribbon 2-tubes which may pass a finite number of times through singular ribbon 2-tubes.

It is a *self*-homotopy iff each singular ribbon disk involves twice the same tube.

At the level of welded diagrams



self-homotopies

Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

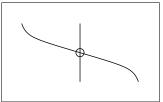
Classification

Definition

An *homotopy* is a path of ribbon 2-tubes which may pass a finite number of times through singular ribbon 2-tubes.

It is a *self*-homotopy iff each singular ribbon disk involves twice the same tube.

At the level of welded diagrams



self-homotopies

Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

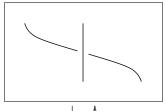
Definition

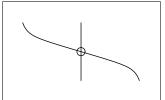
An *homotopy* is a path of ribbon 2-tubes which may pass a finite number of times through singular ribbon 2-tubes.

It is a *self*-homotopy iff each singular ribbon disk involves twice the same tube.

At the level of welded diagrams, it corresponds to *(de)virtualization* of (self-)crossings.

self-homotopies





> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Ribbon 2-tubes up to self-homotopy

Theorem (ABMW)

Every welded diagram is self-homotopic to a welded pure braid.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Ribbon 2-tubes up to self-homotopy

Theorem (ABMW)

Every welded diagram is self-homotopic to a welded pure braid.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Corollary

Every ribbon 2-tube is self-homotopic to a monotone one.

> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Ribbon 2-tubes up to self-homotopy

Theorem (ABMW)

Every welded diagram is self-homotopic to a welded pure braid.

Corollary

Every ribbon 2-tube is self-homotopic to a monotone one.

Corollary $rT_n^h := rT_n/\{self-homotopy\} \cong wD_n/\{self-homotopy\}.$

Benjamin Audoux

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Reduced free group

Let $F_n := \langle x_1, \cdots, x_n \rangle$ be the free group on *n* generators.

Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Reduced free group

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $F_n := \langle x_1, \cdots, x_n \rangle$ be the free group on *n* generators.

Definition

We define RF_n as $\operatorname{F}_n/[x_i, y^{-1}x_iy]$.

Beniamin AUDOUX

Classification

Reduced free group

Let $F_n := \langle x_1, \cdots, x_n \rangle$ be the free group on *n* generators.

Definition

We define RF_n as $\operatorname{F}_n/[x_i, y^{-1}x_iy]$.

Definition

We define $Aut_C(F_n)$ as the group of automorphisms of RF_n which send every generator to a conjugate of itself.

> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Meridians of ribbon 2-tubes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let T be a ribbon 2-tubes and fix a base point in $B^4 \setminus T$.

> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

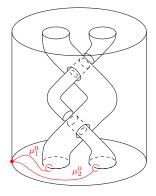
Self-homotopy

Classification

Meridians of ribbon 2-tubes

Let T be a ribbon 2-tubes and fix a base point in $B^4 \setminus T$.

We define μ_i^0 as the based loop which enlaces $C_i \times \{0\}$.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

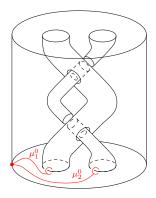
Meridians of ribbon 2-tubes

Let T be a ribbon 2-tubes and fix a base point in $B^4 \setminus T$.

We define μ_i^0 as the based loop which enlaces $C_i \times \{0\}$.

Proposition

$$\pi_1(B^4 \setminus T)/[\mu_i^0, \lambda^{-1}\mu_i^0\lambda] \cong RF_n.$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Meridians of ribbon 2-tubes

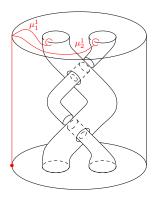
Let T be a ribbon 2-tubes and fix a base point in $B^4 \setminus T$.

We define μ_i^0 as the based loop which enlaces $C_i \times \{0\}$.

Proposition

 $\pi_1(B^4 \setminus T)/[\mu_i^0, \lambda^{-1}\mu_i^0\lambda] \cong RF_n.$

We define μ_i^1 as the based loop which enlaces $C_i \times \{1\}$.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Meridians of ribbon 2-tubes

Let T be a ribbon 2-tubes and fix a base point in $B^4 \setminus T$.

We define μ_i^0 as the based loop which enlaces $C_i \times \{0\}$.

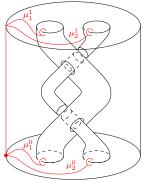
Proposition

 $\pi_1(B^4 \setminus T)/[\mu_i^0, \lambda^{-1}\mu_i^0\lambda] \cong RF_n.$

We define μ_i^1 as the based loop which enlaces $C_i \times \{1\}$.

Proposition (ABMW)

Expressing μ_i^1 as a product of μ_j^0 defines a map $\varphi_T \in Aut_C(F_n)$ which depends only on the self-homotopy class of T.



Classification

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

group Benjamin Audoux

Ribbon 2-tubes and

reduced free

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Theorem (ABMW) $\varphi: \begin{array}{ccc} rT_n^h \rightarrow Aut_C(F_n) \\ T \mapsto \varphi_T \end{array}$ is a group isomorphism.

Classification

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

group Benjamin Audoux

Ribbon 2-tubes and

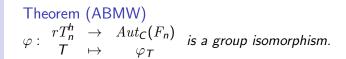
reduced free

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification



This can be compared with

Theorem (Habegger–Lin) $\varphi: \begin{array}{ccc} SL_n^h \rightarrow Aut_C^0(F_n) \\ T \mapsto \varphi_T \end{array}$ is a group isomorphism.

> Benjamin AUDOUX

Ribbon 2–tubes

Welded diagrams

Self-homotopy

Classification

Merci de votre attention.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ