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Ribbon 2–tubes

We consider B4 seen as B3 × I .

We fix n disjoint and unlinked oriented
circles C1, · · · ,Cn in B3.

We consider embedded annuli T1, · · · ,Tn

s.t.
• ∂Ti = Ci × {0, 1};
• they admit a ribbon filling

, that is
immersed 3–balls B1, · · · ,Bn s.t.

• ∂Bi = Ti ;
• the singular set is a finite union of

ribbon disks.

Definition
We define rTn as the monoid of ribbon
2–tubes up to isotopy.
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Ribbon disk singularities

Definition
A ribbon disk is a disk D ∈ Bi ∩ Bj of double points s.t.

• D̊ ⊂ B̊i and ∂D is essential in ∂Bi = Ti ;

• D ⊂ B̊j .
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Ribbon disk singularities

t < 0
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Projection in B3

Can it be nicely projected in B3 ?

In order to project along the height z ,
let’s represent it as the time parameter.
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z < 0
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:z

We loose the information that whether the flying disk
was moving upward or downward.
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y

z = −ε

We loose the information that whether the flying disk
was moving upward or downward.
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cylinder below
the plane

44
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Broken surfaces

y

t

x

The 3–dimensional projection can be enhanced with

over/underpassing decorations.
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Broken surfaces

t

y

x

If the flying disk is moving downward,

then the decorations are swapped.
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Moves on broken surfaces

←→
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Moves on broken surfaces

←→
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Welded diagrams

Definition
A (virtual) diagram is an immersion of n
oriented arcs A1, · · · ,An in R× I s.t.

• ∂Ai = {i} × {0, 1};
• the singular set is a finite number of

transverse double points

decorated as

, or

Definition
We define wDn as the monoid of diagrams
quotiented by the following relations:
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Welded diagrams

↔ ↔ ↔

↔ ↔ ↔

Usual and virtual Reidemeister moves
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Welded diagrams

authorized: ↔

still forbidden: ↔/

Welded Reidemeister moves
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The tube application

For every diagram, one can associate a broken surface, and
hence a ribbon 2–tube, by blowing up strings as follows:

7→ 7→

7→ 7→
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The tube application

Proposition

This assignment defines a map Tube : wDn → rTn.

Proposition (Yanagawa,Satoh)

The map Tube is surjective.



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

The tube application

Proposition

This assignment defines a map Tube : wDn → rTn.

Proposition (Yanagawa,Satoh)

The map Tube is surjective.



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Monotone ribbon 2–tubes

Definition
A ribbon 2–tubes T ⊂ B3 × I is said
monotone iff T ∩

(
B3 × {t}

)
is always

a union of n circles.

Definition
A diagram D ⊂ R× I is said to be a pure
braid iff D ∩

(
R× {t}

)
is always a union of

n points.

Theorem (Brendle–Hatcher)

The map Tube yields an isomorphism
between welded pure braids and monotone
ribbon 2–tubes.
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Ribbon 2–tubes with only one tube are already
hard to understand.

Interactions of a tube with other tubes appear
to be easier than with itself.

we want to get rid of self-knottedness !
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Singular ribbon 2–tubes

Definition
Singular ribbon 2–tube are immersions of annuli T1, · · · ,Tn s.t.

• ∂Ti = Ci × {0, 1};
• they admit a singular ribbon filling.

, that is immersed
3–balls B1, · · · ,Bn s.t.

• ∂Bi = Ti ;
• the singular set is the union of a finite number of ribbon

disks with a singular ribbon disks.
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3–balls B1, · · · ,Bn s.t.
• ∂Bi = Ti ;
• the singular set is the union of a finite number of ribbon

disks with a singular ribbon disks.
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Singular ribbon disks

Definition (regular ribbon disk)

It is a disk D ∈ Bi ∩ Bj of double points s.t.

• D̊ ⊂ B̊i and ∂D is essential in ∂Bi = Ti ;

• D ⊂ B̊j .

Definition (singular ribbon disk)

It is a disk D ∈ Bi ∩ Bj of double points s.t.

• D̊ ⊂ B̊i and ∂D is essential in ∂Bi = Ti ;

• D ⊂ ∂Bj = Tj .



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Singular ribbon disks

Definition (regular ribbon disk)

It is a disk D ∈ Bi ∩ Bj of double points s.t.

• D̊ ⊂ B̊i and ∂D is essential in ∂Bi = Ti ;

• D ⊂ B̊j .

Definition (singular ribbon disk)

It is a disk D ∈ Bi ∩ Bj of double points s.t.

• D̊ ⊂ B̊i and ∂D is essential in ∂Bi = Ti ;

• D ⊂ ∂Bj = Tj .



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Singular ribbon disks

Definition (regular ribbon disk)

It is a disk D ∈ Bi ∩ Bj of double points s.t.

• D̊ ⊂ B̊i and ∂D is essential in ∂Bi = Ti ;

• D ⊂ B̊j .

Definition (singular ribbon disk)

It is a disk D ∈ Bi ∩ Bj of double points s.t.

• D̊ ⊂ B̊i and ∂D is essential in ∂Bi = Ti ;

• D ⊂ ∂Bj = Tj .



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Singular ribbon disks

Definition (regular ribbon disk)

It is a disk D ∈ Bi ∩ Bj of double points s.t.

• D̊ ⊂ B̊i and ∂D is essential in ∂Bi = Ti ;

• D ⊂ B̊j .

Definition (singular ribbon disk)

It is a disk D ∈ Bi ∩ Bj of double points s.t.

• D̊ ⊂ B̊i and ∂D is essential in ∂Bi = Ti ;

• D ⊂ ∂Bj = Tj .



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Singular ribbon disks

z < 0

y

t

x

:z



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Singular ribbon disks

z = −ε

y

t

x

:z



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Singular ribbon disks

z = 0

y

t

x

:z



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Singular ribbon disks

z = +ε

y

t

x

:z



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Singular ribbon disks

z > 0

y

t

x

:z



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Desingularization



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Desingularization

push in

44



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Desingularization

push in

44

push out

**



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Desingularization

y

t

x

:z

push in

44

push out

**



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Desingularization

y

t

x

:z

y

t

x

:z

push in

44

push out

**



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

Desingularization

y

t

x

:z

y

t

x

:z

push in

44

push out

**

y

t

x

:z



Ribbon
2–tubes and
reduced free

group

Benjamin
Audoux

Ribbon
2–tubes

Welded
diagrams

Self-homotopy

Classification

homotopies

y

t

x

:z

or
��

OO

y

t

x

:z

Definition
An homotopy is a path of ribbon
2–tubes which may pass a finite
number of times through singular
ribbon 2–tubes.
It is a self-homotopy iff each
singular ribbon disk involves twice
the same tube.

At the level of welded diagrams,
it corresponds to (de)virtualization
of (self-)crossings.
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Ribbon 2–tubes up to self-homotopy

Theorem (ABMW)

Every welded diagram is self-homotopic to a welded pure braid.

Corollary

Every ribbon 2–tube is self-homotopic to a monotone one.

Corollary

rTh
n := rTn

/
{self-homotopy} ∼= wDn

/
{self-homotopy}.
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Reduced free group

Let Fn := 〈x1, · · · , xn〉 be the free group on n generators.

Definition
We define RFn as Fn

/[
xi , y

−1xiy
]
.

Definition
We define AutC (Fn) as the group of automorphisms of RFn

which send every generator to a conjugate of itself.
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Meridians of ribbon 2–tubes

Let T be a ribbon 2–tubes and fix a
base point in B4 \ T .

We define µ0
i as the based loop which

enlaces Ci × {0}.
Proposition
π1(B4 \ T )

/[
µ0
i , λ

−1µ0
i λ

] ∼= RFn.

We define µ1
i as the based loop which

enlaces Ci × {1}.
Proposition (ABMW)

Expressing µ1
i as a product of µ0

j defines
a map ϕT ∈ AutC (Fn) which depends
only on the self-homotopy class of T .
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Classification

Theorem (ABMW)

ϕ :
rTh

n → AutC (Fn)
T 7→ ϕT

is a group isomorphism.

This can be compared with

Theorem (Habegger–Lin)

ϕ :
SLh

n → Aut0C (Fn)
T 7→ ϕT

is a group isomorphism.
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Merci de votre attention.
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