ICTS Summer School on Numerical Relativity 2013 – Mathematical formulation Course information

Outline

- A brief review of GR (roughly Day 1)
 - Tensors and curvature
 - Einstein's field equations
 - Some important solutions
- The 3+1 decomposition (roughly Days 2 and 3)
 - Foliations of spacetime
 - Intrinsic and extrinsic curvature
 - The Lie derivative
 - The Gauss, Codazzi and Ricci equations
 - The ADM equations
- Solving the constraint equations (roughly Day 4)
 - Conformal Transformations
 - Elementary solutions to the Hamiltonian constraint
 - The conformal transverse-traceless decomposition
 - Bowen-York solutions
- Solving the evolution equations (roughly Day 5)
 - Comparison with Maxwell's equations
 - The "generalized harmonic" approach
 - The BSSN equations
 - Choosing the lapse and shift

Some References

Any textbook on General Relativity will be useful for a review of GR, but I particularly recommend

- T. Moore, A General Relativity Workbook, University Science Books
- S. Carroll, Spacetime and Geometry, Addison-Wesley

My lectures will mostly be based on

• T. W. Baumgarte & S. L. Shapiro, Numerical Relativity: Solving Einsteins Equations on the Computer, Cambridge University Press

but I also recommend

- M. Alcubierre, Introduction to 3+1 Numerical Relativity, Oxford University Press
- E. Gourgoulhon, 3+1 Formalism in General Relativity, Springer
- C. Bona, C. Palenzuela-Luque & C. Bona-Casas, Elements of Numerical Relativity and Relativistic Hydro-dynamics, Springer

Some Conventions

- We will use geometrized units, in which c = G = 1
- Indices a, b, c, \ldots, h and o, p, q, \ldots run over spacetime indices, while i, j, k, \ldots, n run over spatial indices only ("Fortran" convention)
- We use the Einstein summation convention, by which we sum over repeated indices
- The flat spacetime (or space) metric is denoted by η_{ab} (or η_{ij}) in any coordinate system. Only in Cartesian (inertial) coordinates do we have $\eta_{ab} = \text{diag}(-1, 1, 1, 1)$.
- In general (but not always) will we refer to objects associated with
 - the spacetime M as g_{ab} , $^{(4)}\Gamma^a_{bc}$, ∇_a , $^{(4)}R_{ab}$, etc.
 - a spatial slice Σ as γ_{ij} , Γ^i_{jk} , D_i , R_{ij} , etc.
 - a conformally related space as $\bar{\gamma}_{ij}$, $\bar{\Gamma}^i_{jk}$, \bar{D}_i , \bar{R}_{ij} , etc.
- The symmetric and antisymmetric parts of a tensor are defined in the usual way, e.g.

$$T_{(ab)} \equiv \frac{1}{2}(T_{ab} + T_{ba})$$
 and $T_{[ab]} \equiv \frac{1}{2}(T_{ab} - T_{ba}).$