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Course Outline

7 The Physics of CMB Anisotropies

* Quantum Initial Conditions
* Acoustic Dynamics

* Results from Planck

? Inflation in String Theory

* Inflation in Effective Field Theory
* Moduli Stabilization

* Examples of String Inflation

Course website: www.damtp.cam.ac.uk/user/db275/Puri.pdf

Reference: DB and Liam McAllister, Inflation and String Theory
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Please ask questions
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Lecture |

The Physics of
CMB Anisotropies

Recombination

Cosmic Microwave
Big Bang Nucleosynthesis A Background
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3 min 380,000 yrs




Cosmic Microwave Background
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Cosmic Microwave Background
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CMB Anisotropies
f(v,R) = [exp(2mv/T(R)) — 1]

For Gaussian fluctuations, the statistics is determined by the 2-pt function:

C(0) = (AT(R)AT(n'))

A ensemble average




CMB Power Spectrum

The same information can be represented by a spherical harmonic
expansion of the temperature field

O(n) = ATT—W =Y 00, Yom(R)
m

The (angular) power spectrum is

| 1 ¢ |
_ 2
Cr = 2€+1mZ O,

L

ANk . S

This compresses the 107 pixels of the
CMB map into 103 multipole moments.



CMB Power Spectrum
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The Physics of CMB Anisotropies

The goal of this lecture is to derive the
CMB power spectrum from first principles.

Initial Conditions + Evolution + Projection

A (k) T(k)

R N ﬂ

see Leonardo’s lectures



Initial Conditions



The CMB measures distortions in space:

expansion

v o
C de? = a®(t) {1 _I__Q,C(t’ m)} 042" da?

curvature
scalar mode perturbation

)

isotropic
stretching

hij A2 = a2(t) [5@- + W} zida

gravitational waves

T

anisotropic
stretching

tensor mode

Both are produced by quantum fluctuations during inflation.
a(t) = e''t



An inflationary model requires a clock which

. . . . see Leonardo’s lectures
determines the amount of inflation still to occur.

The clock can be a fundamental scalar field (the inflaton):

A 0p(x) ——> 0t = — » ( = Hét

end of
inflation

By the uncertainty principle, arbitrarily precise
timing is not possible in quantum mechanics.

This leads to fluctuations in the end of inflation ...

...and to curvature perturbations after inflation.



Quantum Clocks During Inflation

The can be computed on the back of an envelope:
1
s— [dtey=g | 5007 - V()
6=6+0 |
4., 3 [¢ 2 2
Sz/d:ca {&b —(V(M)}

|

. . %
5é + 3HGEH 8¢ =0
. a’(t)
friction
T W)

Modes start with w(t) > H (subhorizon), where they
experience zero-pt fluctuations of a harmonic oscillator.



Quantum Clocks During Inflation

i 1 — s 56+ 3HS) + ——§¢p —
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Quantum Clocks During Inflation

111 |
2 a3(t) k/a(t)

((09)7) =

This holds as long as the mode evolves
adiabatically (inside the horizon).

These fluctuations freeze in at horizon crossing (k/a, = H, )

= 33100 = (57)

and become classical curvature perturbations:

121 2
A2(k) = <E> A2, (k)
A (model-dependent) conversion




Primordial Perturbations from Inflation

We have arrived at a famous result:

1 H* net
Ag( k) = . = A, Ll
87’(’2 ¢2 k*
Mukhanov and Chibisov /E___ evaluated at

Bardeen, Steinhardt and Turner
Starobinsky
Hawking

k=aH

Quantum fluctuations also create gravitational waves:

IR

2 H?
Aj (k) =

2 N2
7TMpl

Starobinsky



Evolution

Wayne Hu, arXiv:0802.3688



Two Phases of Evolution

recombination today
e fime

C (O, w) sound waves 5pr (7’ rec s {B) free-streaming @0

? free-streaming = photon geodesics in the perturbed spacetime
ds? = (1+ Q\P)dt2 — a? (t)(1 — 2<I>)da32 Newtonian gauge

gravitational
intrinsic AT redshift

I — —
O = (O + )rec + Doppler + ISW

observed j L—-_ effective temperature

temperatu re
Sachs-Wolfe

» sound waves = oscillations supported by radiation pressure



Tight-Coupling Approximation
7 Cast of characters:

photons

Juv Y Juv

E\ Lo
& \ tight-coupling o« A

.;' \ i 0 @
..,.‘C.(.).L.:Iomb - dark matter photon-baryon fluid

bar.yons

7 Tight-coupling approximation:
Near recombination the mean free path of photons is 2.5 Mpc (= 0.01 x horizon).

On larger scales, we can treat photons and baryons as a single tightly coupled fluid.



A (Over)Simplified Treatment

We will start with a simplified system and then fix things one by one:

7 Neglect the momentum density of the baryons:

P O h?
RE(ﬂbJr b)Ub:§@%0'6( bh)(a)<1
(Pv"‘Pv)vw 4:07

P Neglect anisotropic stress: U ~ &

P Neglect radiation in the expansion:

) Q12 —1 —1
’0_:(),3<015> (a) <1 » U =~ const.
Pm . Qrec

P lgnore gravity!



Fluid Equations

» Continuity equation = conservation of photon number

— , ,
/ -+ 30/_ — V ( I — i
"y Lol Ny Vs) - dT
Tt
number density J expahsion flux
N~ X a”?

Let n, = n, (7) [1 + 30(T, ZIZ)} (recall: n, o< T%)

EXx: Show that

0 =--V.vu, | > —%k.v,y (1)




Fluid Equations

» Euler equation = momentum conservation

/

a !
[(py + Py)v,]" +4 . (py + Py)vy = =VE, |

———

momentum density expansion force

e

Ex: Using P, = %pv and p = p(T) [1 + 40(T, ZB)} , (recall: p, oc T*)
show that

~~

v, =—-VO | - —kO (2




Sound Waves

Combining (I) and (2), we get

0"+ 2k*O =0

Simple Harmonic Oscillator

0% (0)

Solution: O (7) = Ok (0) cos(ks) - ”

sin(ks)

2
Inflation predicts O (0) = 5@‘,@(0) and ©,(0) =0

O oo
Il
|

speed of sound

n

SE/CSdT

“sound horizon”



Coherent Phases

There is a key prediction here:

O (0) = 0 implies that all k-modes start in phase!

Trec

coherent superposition noise



Acoustic Peaks

1 2nd peak

1 Ist peak
0.2 0.4 0.6 0.8 1.0
S/ Srec
At recombination, we have
2
@rec — gC(O) COS(k‘SreC)
A
I peaks at k,, = " become the peaks of the (.

Srec

Upeaks Measures ()



Including Gravity

Recall ds® = (1 +2¥)dt? — a?(t)(1 — 2®)dz?

P Continuity equation:

perturbation of the scale factor

The curvature perturbation is a local a s a(l — @)
/ /
a a
..and the Hubble rate =~ — +— — — @’
a a

e

1

P Euler equation:

(1)

perturbed expansion

QO'=—-—-V.v, +0
3 A

v, =-VO -V
" ,‘A

(2)

. gravitational force




Including Gravity

Combining (I) and (2), we get
pressure gravity

W %
0" + c7k*O = ; U+ o7

Forced Simple Harmonic Oscillator

We are still assuming: 2 no anisotropic stress ¥ ~ &

7 matter-dominated U ~ const.

SO, we can write | (@ —+ \Ij)” -+ C§k2<@ 1 \Ij) — ()

A

e effective temperature

1
Solution: (@ -+ \If)rec — _EC(O) COS(kSrec)



Including Baryons

Baryons add mass to the photon-baryon fluid.

Conservation applies to the total momentum density

P Euler equation:

inertial mass

= (py + Py)vy + (oo + D)oy =

QO | W~

— gravitational mass

¥

(1+ R)v,]

/

VO — (11 R)VU

ﬂ

P Continuity equation:

stays the same:

(1)

: el

(2)

(1 + R)pyvy



Including Baryons
Combining (I) and (2), we get

(1+ RO + %2@ - —%2(1 + R)W — [(1+ R)®]

We are still assuming: P no anisotropic stress ¥ ~ &
7 matter-dominated W =~ const.

/ /

. a
On subhorizon scales, k& > = = — = aH, we can write
a

A

—d

% O+ (1+ R)U]" + k[0 + (1 + R)W| =0

oo !

*~ 3(1+R)

Solution:  [© + (1 + R)¥](7) = —%(1 + 3R)C(0) cos(ks)



Including Baryons

At recombination, we have r_. shifted equilibrium
A\ 4

(04 T),0 — —%g(()) (14 3R) cos(ksyec) — 3]

larger amplitude j }ﬁ- smaller frequency

Aodd
-Aeven

measures ()

—1—-6R |




Including Radiation
J X a

During the radiation era, we have k2P = 47TG&2,5T5T

¢ ﬁ const.

X a_2

4

i\\/ .%___%,.4*74\ AL NN/ \\{/})(\Q(/A\\\(//ﬂ\\)(/m\\(/mw

/
;b%ﬂﬁé \4 ! \{ ! \4 ! \{ | \{ C)%\{D T I T N R T B R B |_E

D 10 15 20
ks/m

Modes that enter the horizon during the A peaks
radiation era have boosted amplitude: Ablateau

measures ).,



Including Damping

On scales smaller than the mean free path, the tight-coupling approximation
breaks down and the fluctuations experience diffusion damping.

This can be incorporated as an effective viscosity in the oscillator equation:

271 .21’ le 27,2 k? 21 .—25/1/
c; c; 20 —I—k—Q@ + cok @:—g\If—cS[cS ol
D

VKB approximation

Solution: (O 4+ VU)o x cos(kSrec) X o~ (k/kp)*

t damping tail



Summary

We obtained the solution for a single Fourier mode: *

initial condition

Oy (k) = (& (0) ﬁagegﬁzcﬂon

* Should also include Doppler and ISWV terms.
CMBFast, CAMB

/‘H{

""1'0_3' - IIHIIO_Q o 1I0_1
k [Mpc ]

Next, we sum over Fourier modes and project onto the sky.



Projection



Oscillations




The real space temperature field is

T'sy = Trec — 70

Assuming instantaneous recombination, the CMB anisotropies are
Op(n) = /dr Oop(x =1Nn)d(r —ry)

d°k i(kr, ) k-n 2
= [ s R 0u(h) = 3 0 Vi)




Ex: Using gilkrkn — 4o Z i 50(kr ) Y5 (k) Yo (1)
Im

show that
, initial conditions

F v
Cy = 4m / dInk AZ(k) A%l(k)

ﬁ

evolution
where  Ay(k) = T'(k) % je(kry) <

projection




Bessel Projection
“j2(kr,) acts like (£ — kry) ”

¢ =10 ¢ =100 ¢ =500

10 100 500 1000

kr,

Cy ~ 4m A2 (k) A2 (k)

kr, =/



Summary



bhysical scales

H—l

A
classical
i perturbations
5’ quantum fluctuations
4 N — 3 time
- S
e e

primordial perturbations

AL (k)
A

AB C D
-'—.—.—.*

> k

inflation

Seljak and Zaldarriaga

Challinor and Lewis

conventional Big Bang

CMB power spectrum

14



bhysical scales H™ !

A .
classical
i perturbations
5’ quantum fluctuations
4 | | e . ,, | 3 time
inflation conventional Big Bang
primordial perturbations CMB power spectrum
A7 (k)
A
AB C D , Seljak and Zaldarriaga

> k

14



CMB Data



15 years ago
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ADy [uK?]
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Planck (Paper 16)



6-Parameter Fit
Baseline ACDM Model

4 parameters for the background.:

2 parameters for the perturbations:

107 A,

r

0.045 = 0.001
0.315 £ 0.016
0.685 £ 0.018
0.089 £ 0.014
= 2.20x0.11
0.960 £ 0.014

baryons
dark matter
dark energy

optical depth

amplitude

spectral index

evolution

initial conditions



Inflation after Planck
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Scale-Invariance

We expect the fluctuations from inflation to be
nearly (but not exactly!) scale-invariant:

T sl in,—1=x4 . ~ ()

H? HH

B

The deviation from scale-invariance
measures the dynamics during inflation:

H{(t)



Scale-Invariance

0.25 |
Planck+WMAP+BAO
0.20 |
,  015f
r = At
= A2
A ool
tensor
amplitude
0.05 |
0.00 ' ' ' ]

0.94 0.96 0.98 1.00

A n, A
| scale-invariance

{ Planck has detected the expected percent-level deviation !!!

Ng — 0.901 = 0.011

Planck (Paper 22)



Scale-Invariance

025 I N T T
x» = 00
\ ® ¢3
0.20 P N, = 60 ® ¢’ |
OOOQP O le
COOVG e . ¢2/3
0.15 | * i
A? ® R’
2 == small-field
S 0.10 large-field -
0.05 Vid |
na,t\lra’\
0.94 0.96 0.98 1.00

r

Many inflationary models are being tested. Some are falsified.

Planck (Paper 22)



Gaussianity

The CMB is Gaussian to better than 0.1%.
Planck (Paper 24)

> Slow-roll inflation predicts Gaussian fluctuations:

Inflation only occurs on the flat part of the potential
where the self-interactions of the field are small.

A V(09)

The wavefunction of a free field is Gaussian:

> 0P

> Extensions of slow-roll models can produce non-Gaussian fluctuations
from interactions in the inflaton sector or couplings to other sectors.

see Leonardo’s lecture



Appendix



The biggest effect is the motion of the solar system

hot

The observed photon momentum is Doppler-shifted

|

po=p(l+n-v)

L—- CMB rest frame

This corresponds to a large temperature dipole

_To(n) -T _ po(n) —p

O(n)

T p

cold

Fitting the CMB dipole, we find
v A 368 km /s

After removing the dipole, we are left with primordial anisotropy.



After decoupling, the photons travel along geodesics

. . ] Newtonian gauge
in an inhomogeneous spacetime

ds® = (1 + Q%g)d# —a*(t)(1 — 2g>)dw2

!

gravitational curvature
potential perturbation
EXx: Using the geodesic equation, show that
ldp  1lda ﬁiﬁ\IJI(?CI)
pdt  adt adxt Ot
_ /;;_ A A GRAVITATIONAL
! REDSHIFT

REDSHIFT LENSING

Usic prov [0V dz' 0¥ oV  d¥ oV
 wor  \ot T dt ox ot  dt Ot

d _av | 9T+ D)
we get aln(ap) = > (1)




1
For simplicity, we will assume Ne
instantaneous recombination : b

O ——)

)
all photons are
Integrate eq. (1) from ... to g : emitted at f,qc
In(ap)o = In(ap)rec + (Yrec — Yo) + / \Ij T (I) ‘; ap < aT (1 + O)

with
unobservable

(aT)o = (aT)rec
Og — Orec Viec \ / \Ij =+ (I) <
# lrec




Hence, we get

intrinsic AT ‘-1

gravitational
redshift

-
O¢

i?

O

|
- (o
ot

to
U ) +ﬁ-ve} +/ dt (U + o)
rec t

Two steps:

SW D
SACHS-WOLFE  DOPPLER

l) Compute sources at recombination.

Il) Project onto the sky.




