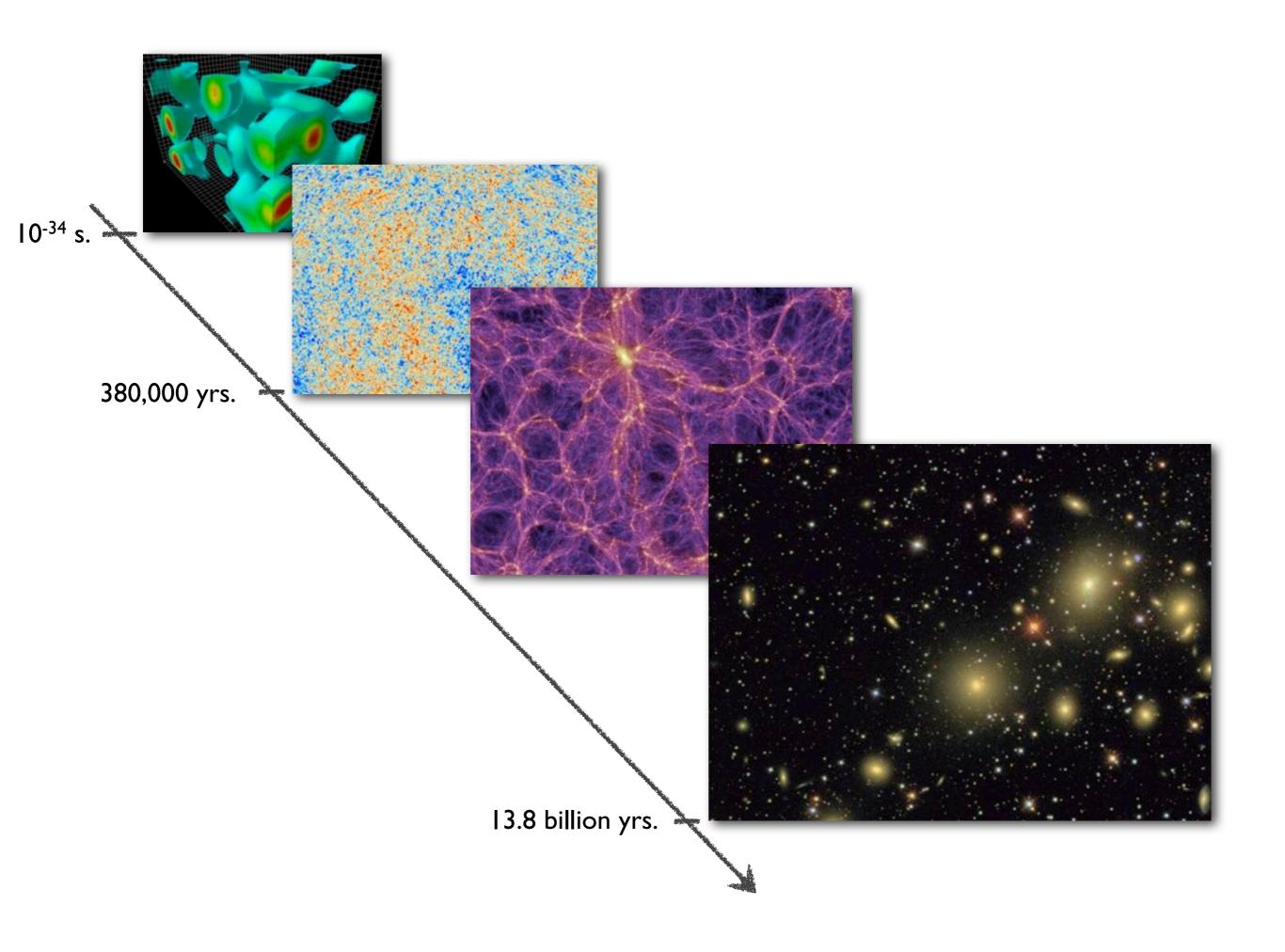
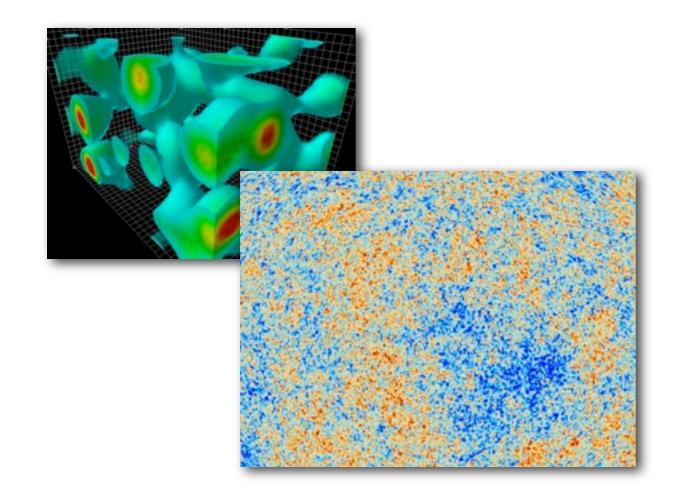
COSMOLOGY for STRING THEORISTS

Daniel Baumann Cambridge University

Asian Winter School on Strings, Particles and Cosmology Puri, January 2014



Course Outline



The Physics of CMB Anisotropies

- * Quantum Initial Conditions
- * Acoustic Dynamics
- * Results from Planck

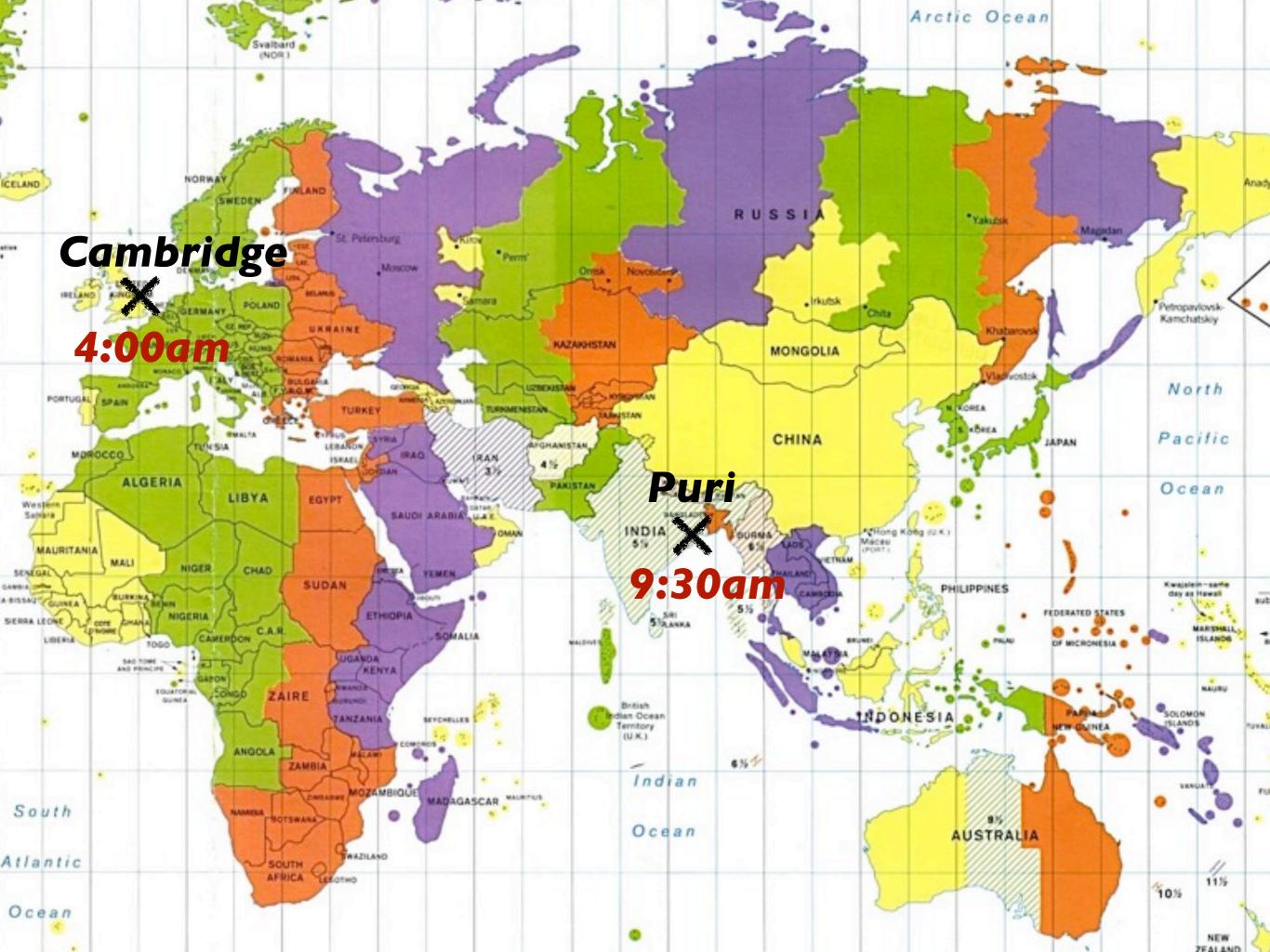
Inflation in String Theory

- * Inflation in Effective Field Theory
- * Moduli Stabilization
- * Examples of String Inflation

Course website: <u>www.damtp.cam.ac.uk/user/db275/Puri.pdf</u>

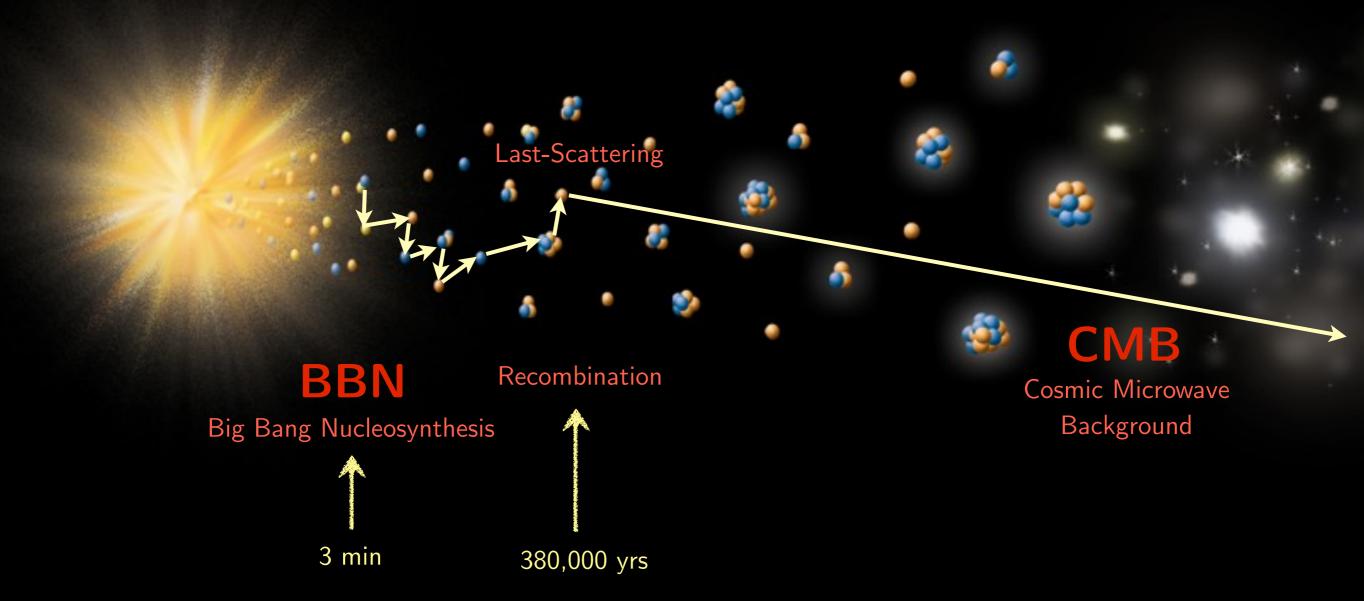
Reference: DB and Liam McAllister, Inflation and String Theory

Please ask questions

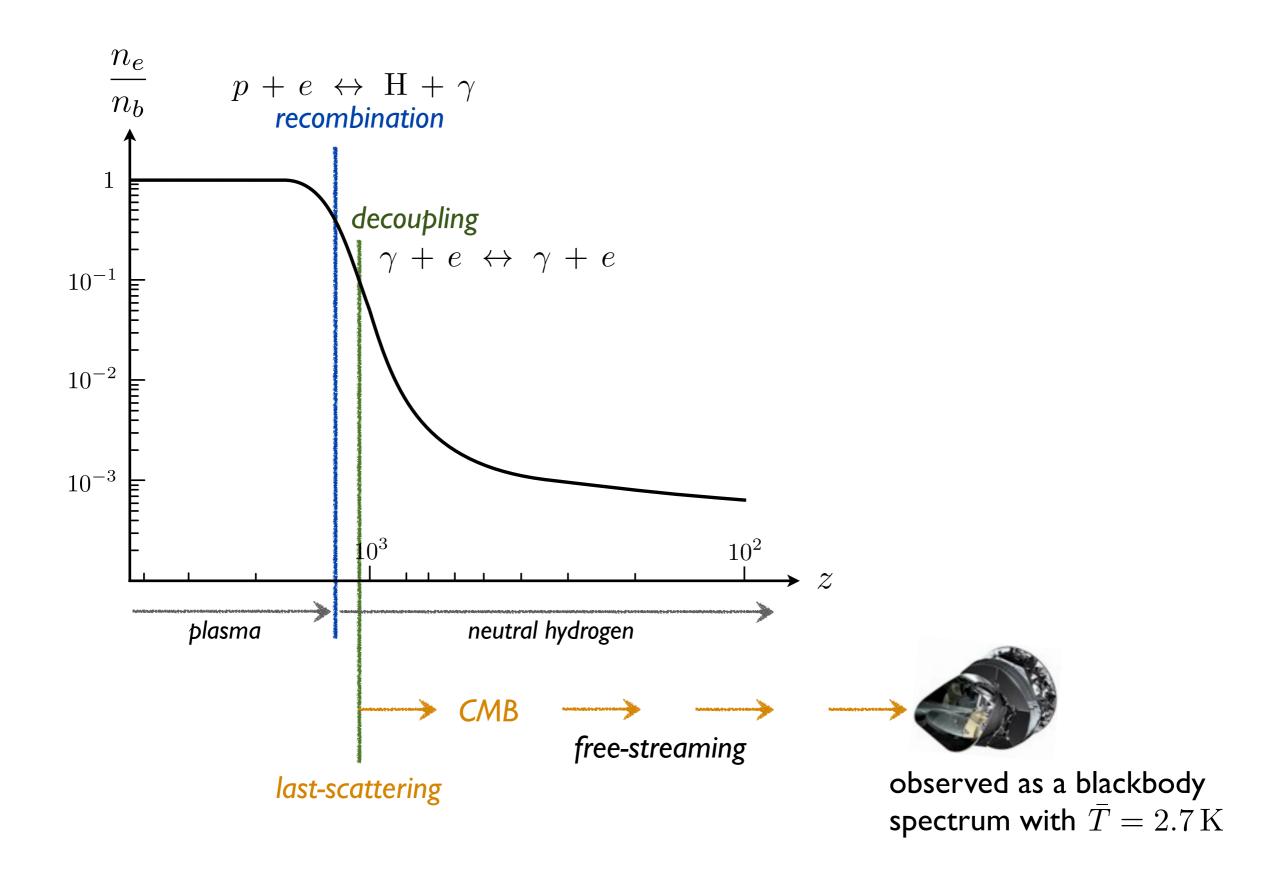


Lecture I

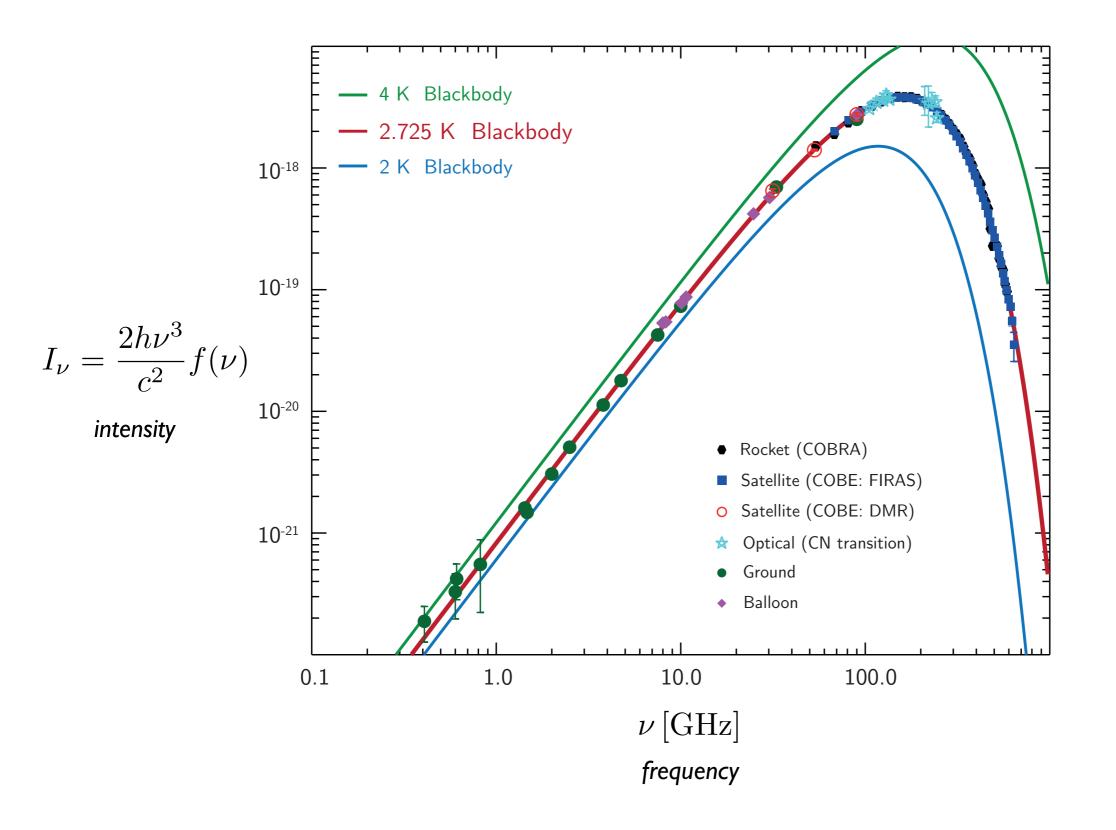
The Physics of CMB Anisotropies

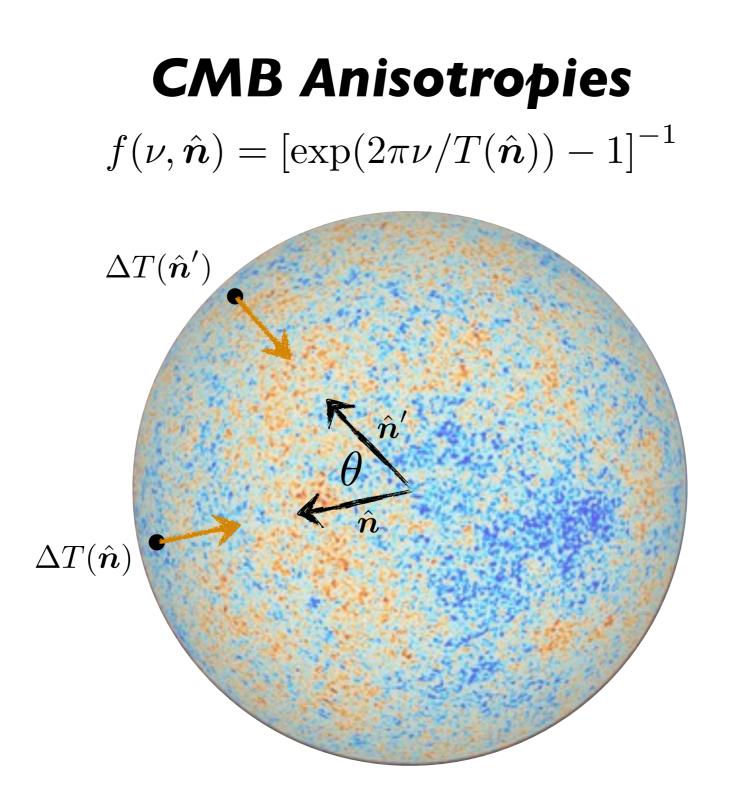


Cosmic Microwave Background



Cosmic Microwave Background





For Gaussian fluctuations, the statistics is determined by the 2-pt function:

 $C(\theta) \equiv \langle \Delta T(\hat{\boldsymbol{n}}) \Delta T(\hat{\boldsymbol{n}}') \rangle$ ensemble average

CMB Power Spectrum

The same information can be represented by a spherical harmonic expansion of the temperature field

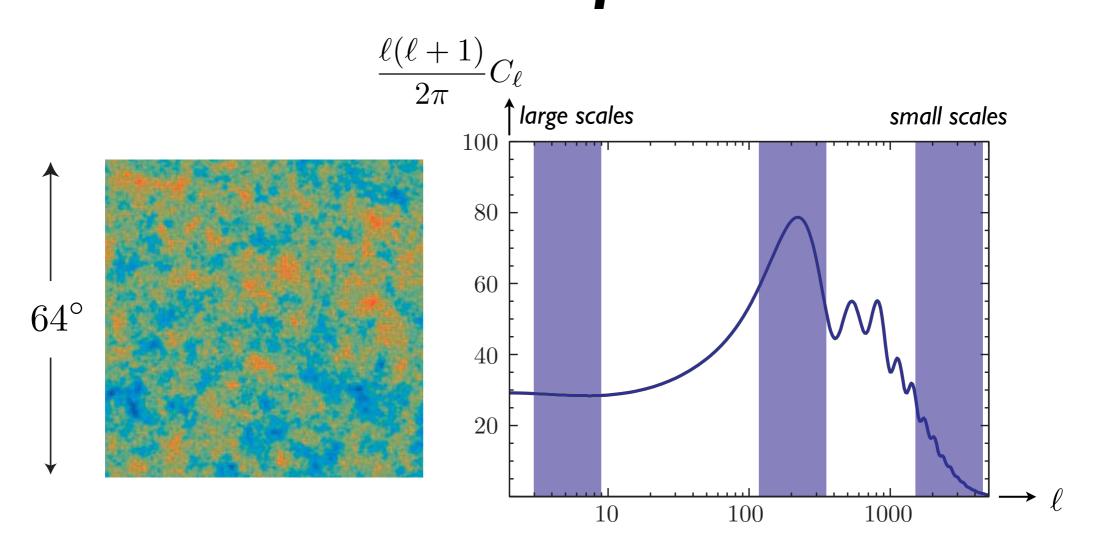
$$\Theta(\hat{\boldsymbol{n}}) \equiv \frac{\Delta T(\hat{\boldsymbol{n}})}{\bar{T}} = \sum_{\ell m} \Theta_{\ell m} Y_{\ell m}(\hat{\boldsymbol{n}})$$

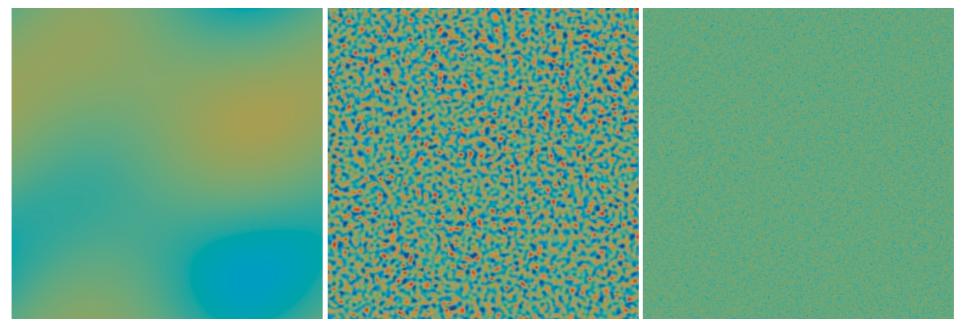
The (angular) power spectrum is

$$C_{\ell} \equiv \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |\Theta_{\ell m}|^2$$

This compresses the 10⁷ pixels of the CMB map into 10³ multipole moments.

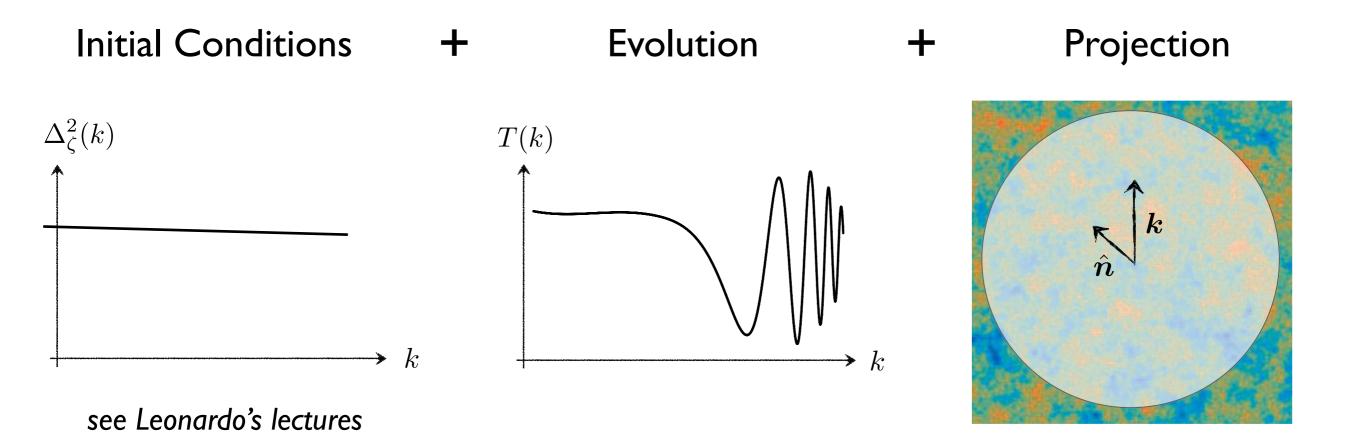
CMB Power Spectrum





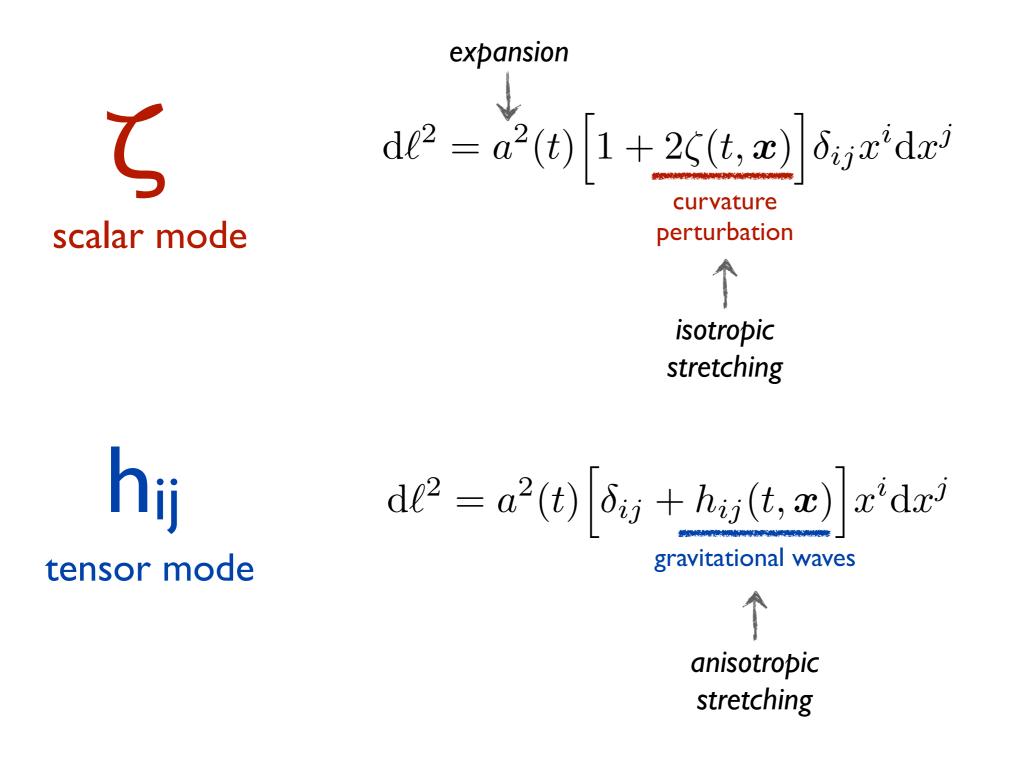
The Physics of CMB Anisotropies

The goal of this lecture is to derive the CMB power spectrum from first principles.



Initial Conditions

The CMB measures distortions in space:

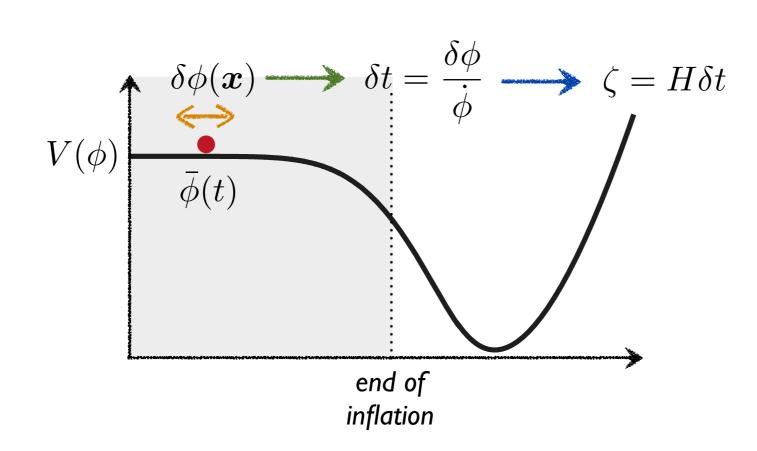


Both are produced by **quantum fluctuations during inflation**.

 $a(t) = e^{Ht}$

An inflationary model requires a **clock** which determines the amount of inflation still to occur. see Leonardo's lectures

The clock can be a **fundamental scalar field** (the inflaton):



By the **uncertainty principle**, arbitrarily precise timing is not possible in quantum mechanics.

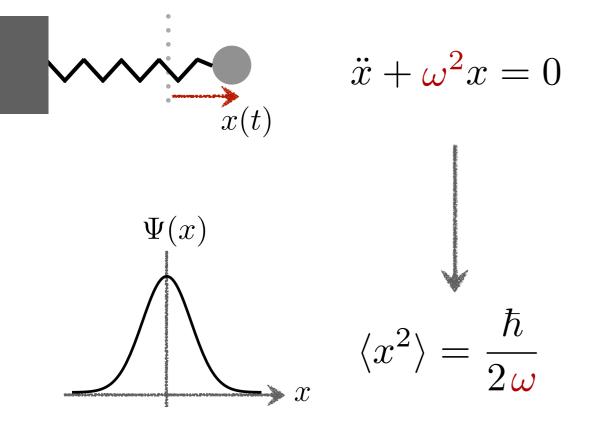
This leads to **fluctuations in the end of inflation** and to **curvature perturbations** after inflation.

Quantum Clocks During Inflation

The *inflaton fluctuations* can be computed on the back of an envelope:

Modes start with $\omega(t) \gg H$ (subhorizon), where they experience zero-pt fluctuations of a harmonic oscillator.

Quantum Clocks During Inflation



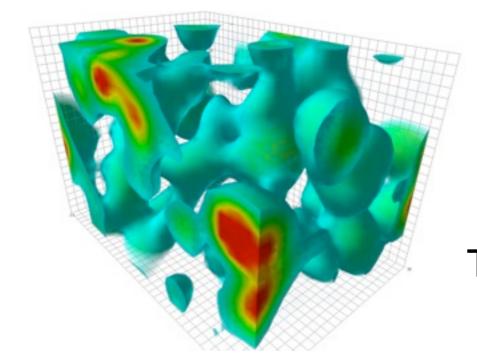
$$\ddot{\delta\phi} + 3H\dot{\delta\phi} + \frac{k^2}{a^2(t)}\delta\phi = 0$$

$$\int \delta\phi_c \equiv a^{-3/2}\delta\phi$$

$$\langle (\delta\phi_c)^2 \rangle = \frac{1}{2\omega}$$

$$\int \langle (\delta\phi)^2 \rangle = \frac{1}{2}\frac{1}{a^3(t)}\frac{1}{k/a(t)}$$

Quantum Clocks During Inflation



$$\langle (\delta \phi)^2 \rangle = \frac{1}{2} \frac{1}{a^3(t)} \frac{1}{k/a(t)}$$

This holds as long as the mode evolves adiabatically (inside the horizon).

These fluctuations freeze in at horizon crossing ($k/a_{\star}=H_{\star}$)

$$\Delta_{\delta\phi}^2(k) \equiv \frac{k^3}{2\pi^2} \langle (\delta\phi)^2 \rangle_{\star} = \left(\frac{H_{\star}}{2\pi}\right)^2$$

and become classical curvature perturbations:

$$\Delta_{\zeta}^{2}(k) \equiv \left(\frac{H}{\dot{\phi}}\right)^{2} \Delta_{\delta\phi}^{2}(k)$$
(model-dependent) conversion

Primordial Perturbations from Inflation

We have arrived at a famous result:

Quantum fluctuations also create gravitational waves:

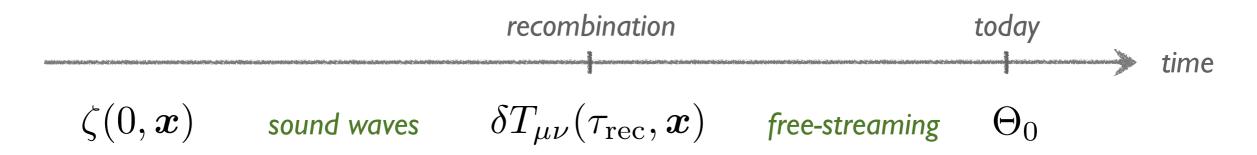
$$\Delta_h^2(k) = \frac{2}{\pi^2} \frac{H^2}{M_{\rm pl}^2}$$

Starobinsky

Evolution

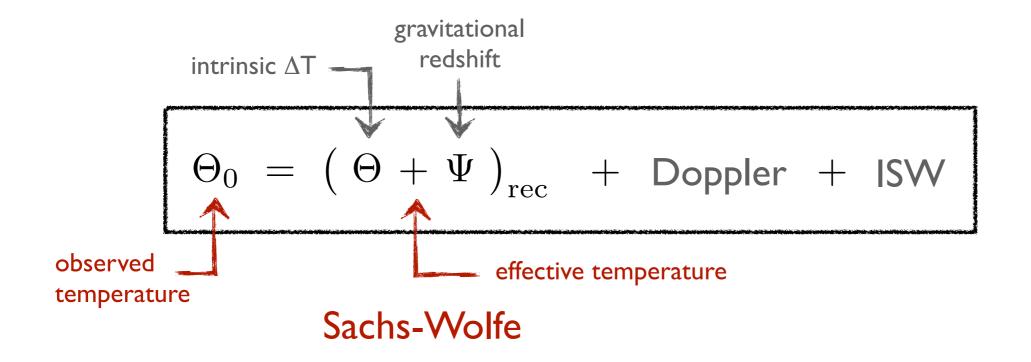
Wayne Hu, arXiv:0802.3688

Two Phases of Evolution



free-streaming = photon geodesics in the perturbed spacetime

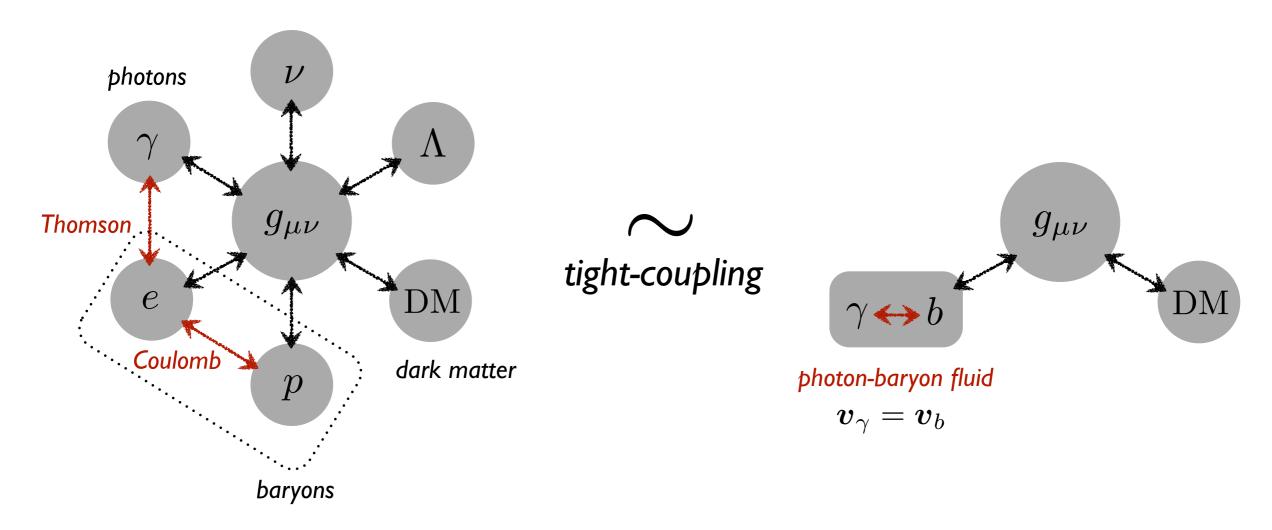
 $\mathrm{d}s^2 = (1+2\Psi)\mathrm{d}t^2 - a^2(t)(1-2\Phi)\mathrm{d}x^2$ Newtonian gauge



sound waves = oscillations supported by radiation pressure

Tight-Coupling Approximation

Cast of characters:



Tight-coupling approximation:

Near recombination the mean free path of photons is 2.5 Mpc (= $0.01 \times \text{horizon}$). On larger scales, we can treat photons and baryons as a single tightly coupled fluid.

A (Over)Simplified Treatment

We will start with a simplified system and then fix things one by one:

Neglect the momentum density of the baryons:

$$R \equiv \frac{(\rho_b + P_b)v_b}{(\rho_\gamma + P_\gamma)v_\gamma} = \frac{3}{4}\frac{\rho_b}{\rho_\gamma} \approx 0.6\left(\frac{\Omega_b h^2}{0.02}\right)\left(\frac{a}{a_{\rm rec}}\right) < 1$$

Neglect anisotropic stress: $\Psi \approx \Phi$

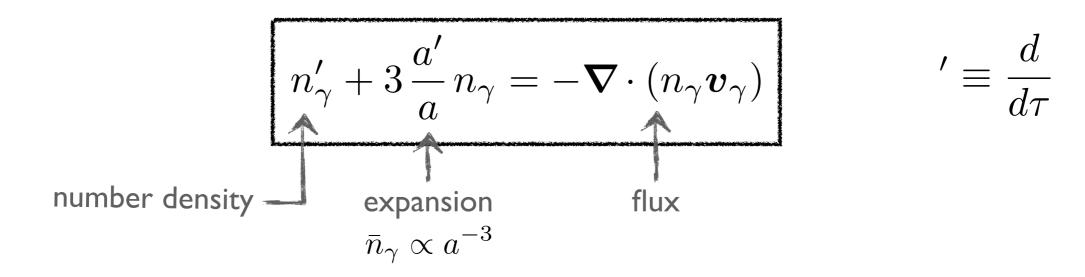
Neglect radiation in the expansion:

$$\frac{\rho_r}{\rho_m} = 0.3 \left(\frac{\Omega_m h^2}{0.15}\right)^{-1} \left(\frac{a}{a_{\rm rec}}\right)^{-1} < 1 \quad \longrightarrow \quad \Psi \approx const.$$

Ignore gravity!

Fluid Equations

Continuity equation = conservation of photon number



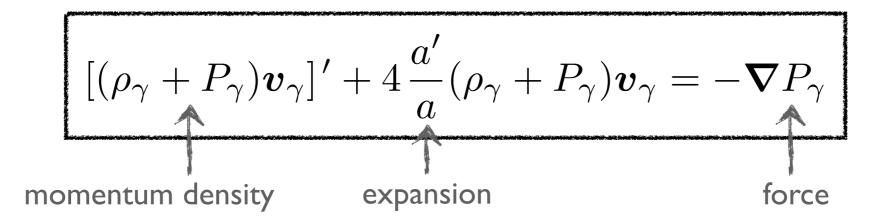
Let
$$n_{\gamma} = \bar{n}_{\gamma}(\tau) \left[1 + 3\Theta(\tau, \boldsymbol{x}) \right]$$
 (recall: $n_{\gamma} \propto T^3$)

Ex: Show that

$$\Theta' = -\frac{1}{3} \boldsymbol{\nabla} \cdot \boldsymbol{v}_{\gamma} \quad \rightarrow \quad -\frac{i}{3} \boldsymbol{k} \cdot \boldsymbol{v}_{\gamma} \quad (\mathsf{I})$$

Fluid Equations

Euler equation = momentum conservation

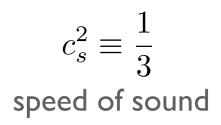


Ex: Using $P_{\gamma} = \frac{1}{3}\rho_{\gamma}$ and $\rho_{\gamma} = \bar{\rho}_{\gamma}(\tau) [1 + 4\Theta(\tau, \boldsymbol{x})]$, (recall: $\rho_{\gamma} \propto T^4$) show that

Sound Waves

Combining (1) and (2), we get

$$\Theta'' + c_s^2 k^2 \Theta = 0$$



Simple Harmonic Oscillator

$$\begin{aligned} \text{Solution:} \quad \Theta_{k}(\tau) &= \Theta_{k}(0)\cos(ks) + \frac{\Theta_{k}'(0)}{kc_{s}}\sin(ks) & s \equiv \int c_{s} d\tau \\ & \text{``sound horizon''} \end{aligned}$$

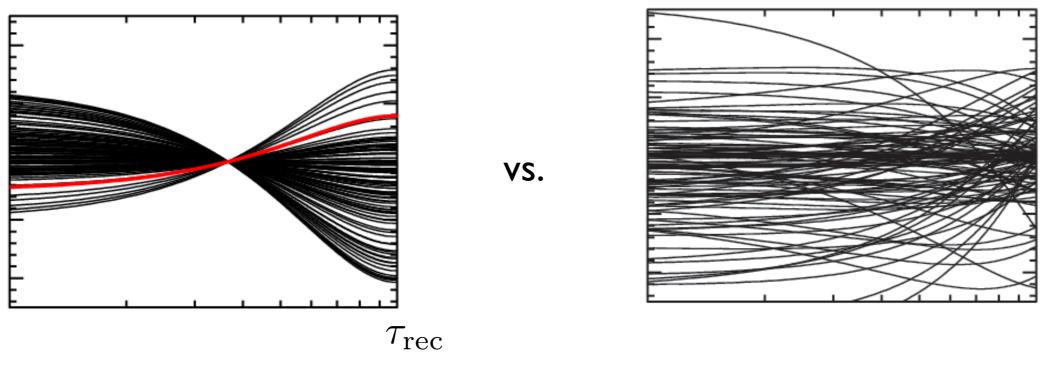
Inflation predicts
$$\Theta_k(0) = rac{2}{5}\zeta_k(0)$$
 and $\Theta'_k(0) = 0$

$$\Theta_{k}(\tau) = \frac{2}{5}\zeta_{k}(0)\cos(ks)$$

Coherent Phases

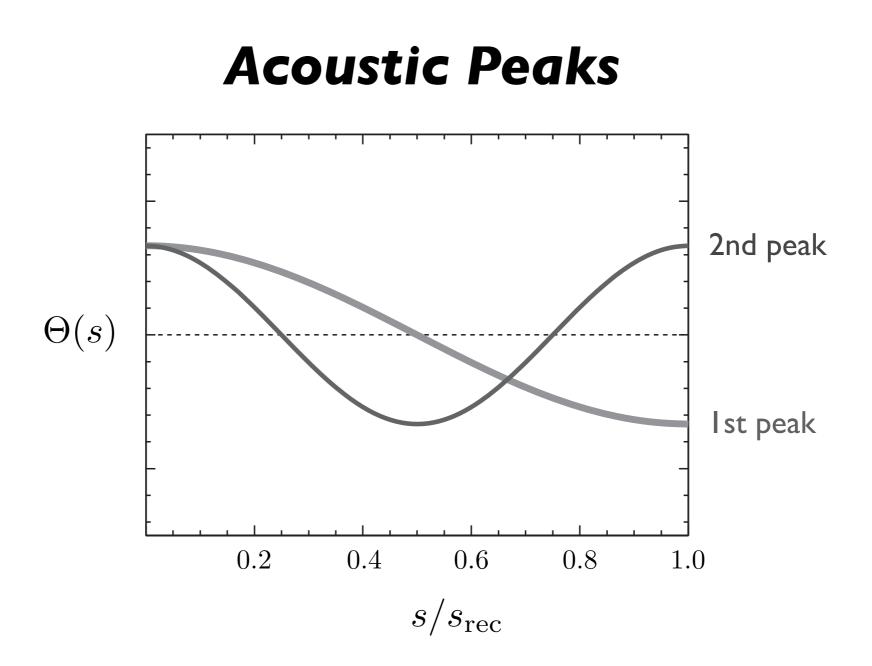
There is a key prediction here:

 $\Theta'_{k}(0) = 0$ implies that all k-modes start in phase!



coherent superposition

noise



At recombination, we have

 $\Theta_{\rm rec} = \frac{2}{5} \zeta(0) \cos(ks_{\rm rec})$ peaks at $k_n = \frac{n\pi}{s_{\rm rec}}$ become the peaks of the C_ℓ . $\ell_{\rm peaks}$ measures Ω_k

Including Gravity

Recall
$$ds^2 = (1 + 2\Psi)dt^2 - a^2(t)(1 - 2\Phi)dx^2$$

The curvature perturbation is a local perturbation of the scale factor

$$a \mapsto a(1 - \Phi)$$

... and the Hubble rate

$$\frac{a'}{a} \mapsto \frac{a'}{a} - \Phi'$$

Continuity equation:

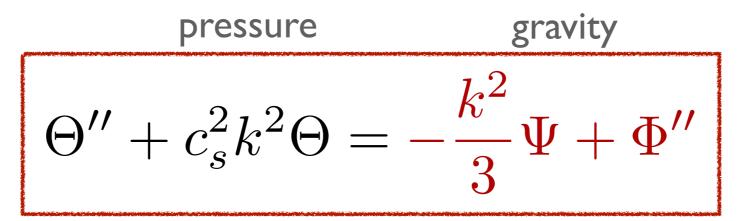
$$\Theta' = -\frac{1}{3} \nabla \cdot v_{\gamma} + \Phi'$$
 (I)
perturbed expansion

▶ Euler equation:

$$v_{\gamma}' = -
abla \Theta -
abla \Psi$$
 (2)
gravitational force

Including Gravity

Combining (1) and (2), we get



Forced Simple Harmonic Oscillator

We are still assuming: ightarrow no anisotropic stress $\ \Psi pprox \Phi$

▶ matter-dominated $\Psi \approx const.$

so, we can write
$$\begin{split} (\Theta + \Psi)'' + c_s^2 k^2 (\Theta + \Psi) &= 0 \\ & \frown \quad \text{effective temperature} \\ \text{Solution:} \quad (\Theta + \Psi)_{\text{rec}} = -\frac{1}{5} \zeta(0) \cos(ks_{\text{rec}}) \end{split}$$

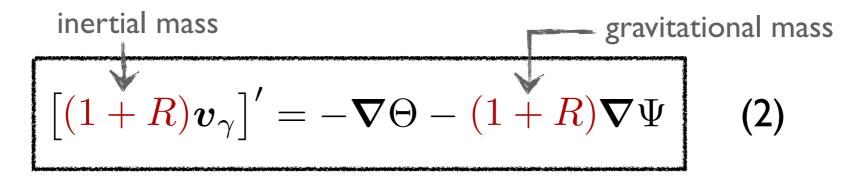
Including Baryons

Baryons add mass to the photon-baryon fluid.

Conservation applies to the total momentum density

$$= (\rho_{\gamma} + P_{\gamma})\boldsymbol{v}_{\gamma} + (\rho_{b} + P_{b})\boldsymbol{v}_{b} \equiv \frac{4}{3}(1+R)\rho_{\gamma}\boldsymbol{v}_{\gamma}$$

Euler equation:



Continuity equation:

stays the same: (1)

Including Baryons

Combining (1) and (2), we get

$$\left[(1+R)\Theta' \right]' + \frac{k^2}{3}\Theta = -\frac{k^2}{3}(1+R)\Psi - \left[(1+R)\Phi' \right]'$$

We are still assuming: \triangleright no anisotropic stress $\Psi \approx \Phi$ \triangleright matter-dominated $\Psi \approx const.$

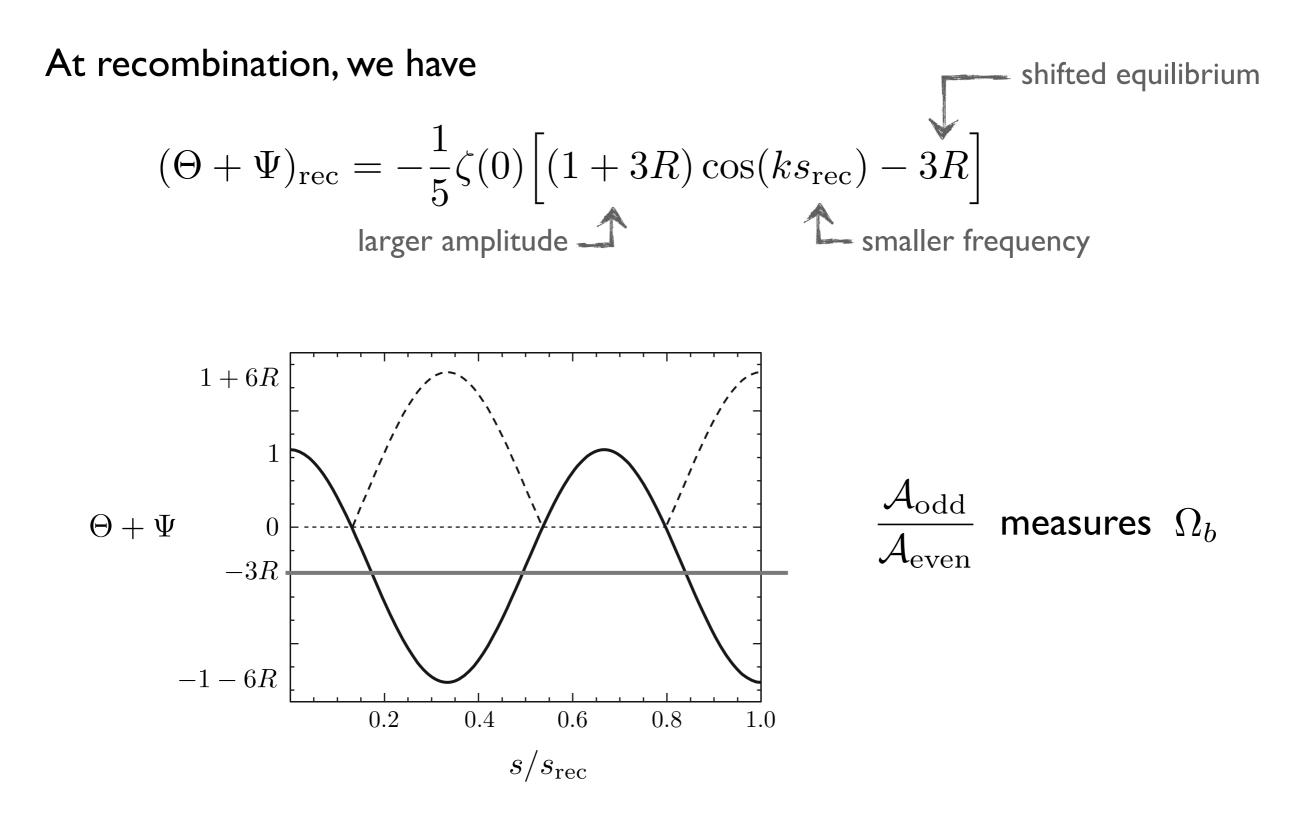
On subhorizon scales, $k \gg \frac{R'}{R} = \frac{a'}{a} = a H$, we can write

$$\begin{bmatrix} \Theta + (1+R)\Psi \end{bmatrix}'' + c_s^2 k^2 \begin{bmatrix} \Theta + (1+R)\Psi \end{bmatrix} = 0$$

$$c_s^2 = \frac{1}{3(1+R)}$$

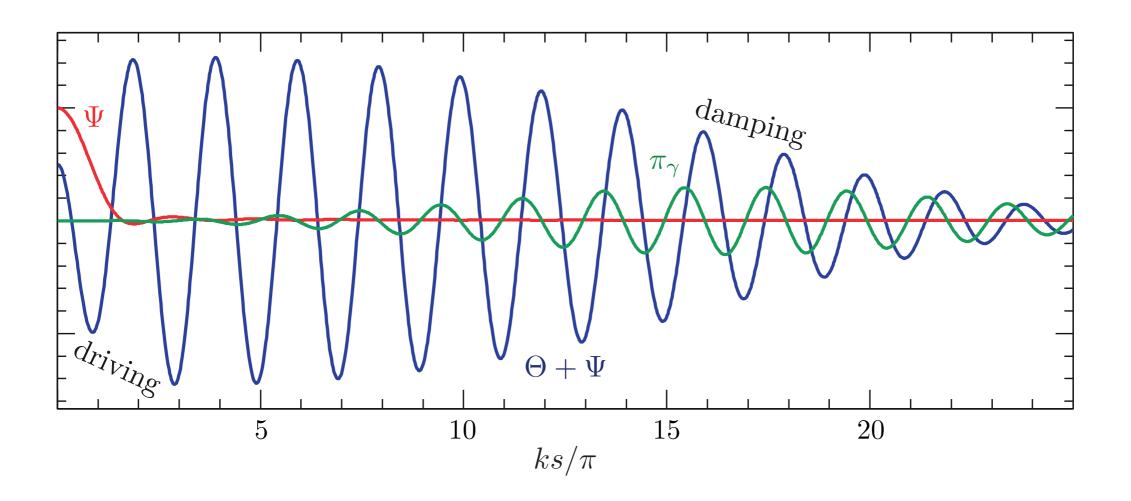
Solution: $\left[\Theta + (1+R)\Psi\right](\tau) = -\frac{1}{5}(1+3R)\zeta(0)\cos(ks)$

Including Baryons



Including Radiation

 $a \propto a^{-4}$ During the radiation era, we have $k^2 \Phi = 4\pi G a^2 \bar{\rho}_r \delta_r$



Modes that enter the horizon during the radiation era have boosted amplitude:

const.

Including Damping

On scales smaller than the mean free path, the tight-coupling approximation breaks down and the fluctuations experience diffusion damping.

This can be incorporated as an effective viscosity in the oscillator equation:

$$c_s^2 [c_s^{-2}\Theta']' + \frac{k^2}{k_D^2} \Theta' + c_s^2 k^2 \Theta = -\frac{k^2}{3} \Psi - c_s^2 [c_s^{-2}\Phi']'$$

$$\bigvee \text{WKB approximation}$$
Solution: $(\Theta + \Psi)_{\text{rec}} \propto \cos(ks_{\text{rec}}) \times \frac{e^{-(k/k_D)^2}}{2}$

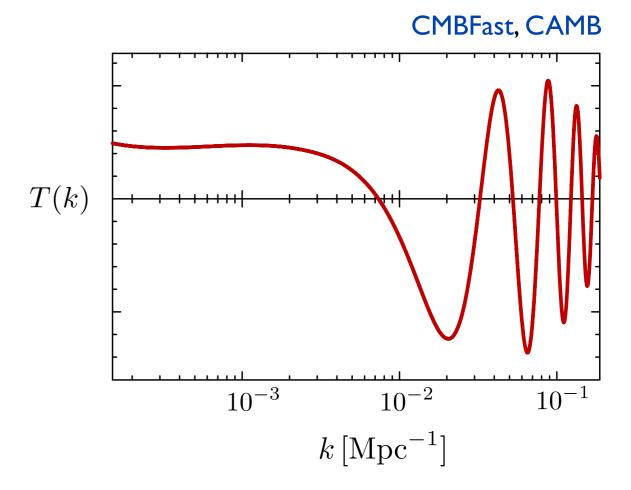
$$\int_{\text{damping tail}} \frac{1}{2} e^{-(k/k_D)^2}$$

Summary

We obtained the solution for a single Fourier mode: *

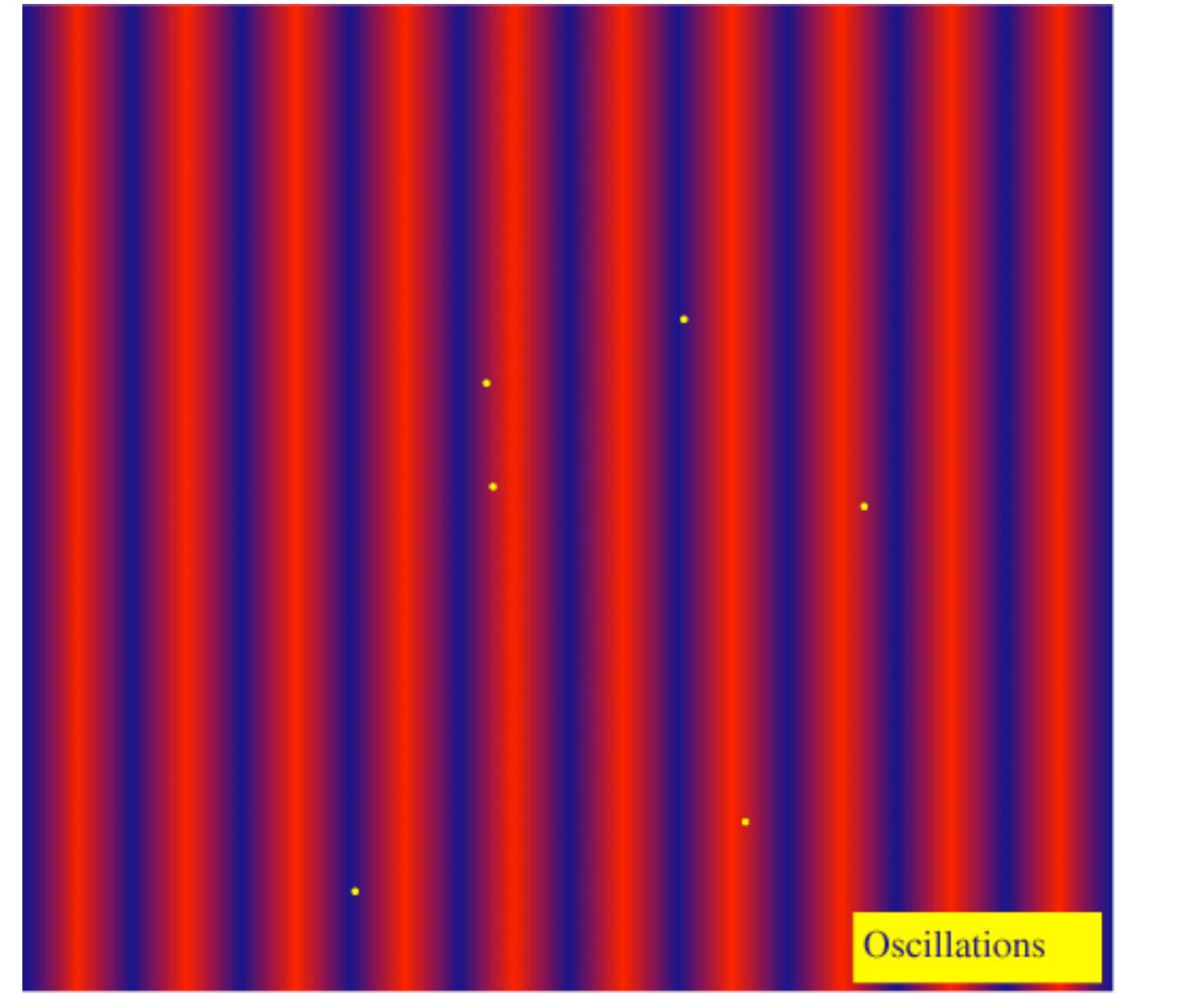
initial condition $\Theta_0(\boldsymbol{k}) = \zeta_{\boldsymbol{k}}(0) \times T(k)$ transfer function

* Should also include Doppler and ISW terms.



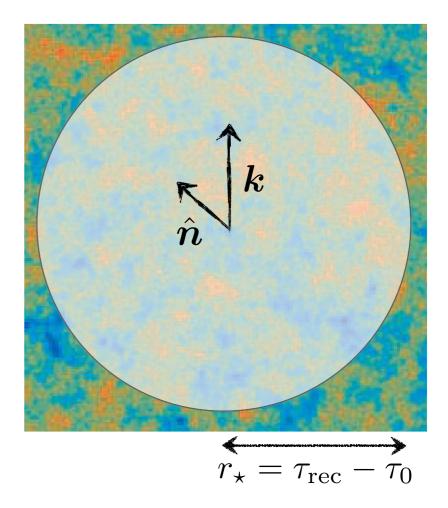
Next, we sum over Fourier modes and project onto the sky.

Projection



The real space temperature field is

$$\Theta_0(\boldsymbol{x}) = \int \frac{\mathrm{d}^3 k}{(2\pi)^{3/2}} \, e^{i\boldsymbol{k}\cdot\boldsymbol{x}} \, \Theta_0(\boldsymbol{k})$$



Assuming instantaneous recombination, the CMB anisotropies are

$$\Theta_0(\hat{\boldsymbol{n}}) = \int \mathrm{d}r \ \Theta_0(\boldsymbol{x} = r\hat{\boldsymbol{n}}) \,\delta(r - r_\star)$$
$$= \int \frac{\mathrm{d}^3 k}{(2\pi)^{3/2}} \,e^{i(kr_\star)\hat{\boldsymbol{k}}\cdot\hat{\boldsymbol{n}}} \,\Theta_0(\boldsymbol{k}) \ \equiv \sum_{\ell m} \Theta_{\ell m} Y_{\ell m}(\hat{\boldsymbol{n}})$$

Ex: Using
$$e^{i(kr_{\star})\hat{\boldsymbol{k}}\cdot\hat{\boldsymbol{n}}} = 4\pi \sum_{\ell m} i^{\ell} j_{\ell}(kr_{\star}) Y_{\ell m}^{*}(\hat{\boldsymbol{k}}) Y_{\ell m}(\hat{\boldsymbol{n}})$$

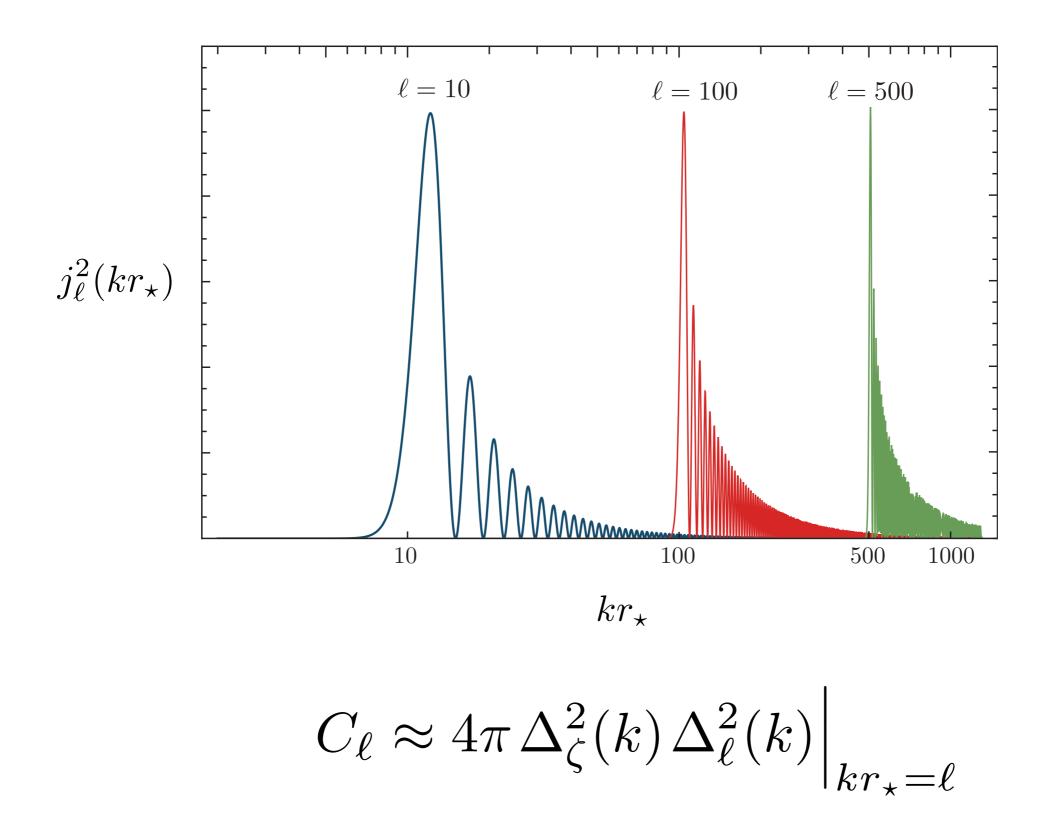
show that

$$C_{\ell} = 4\pi \int d\ln k \, \Delta_{\zeta}^{2}(k) \, \Delta_{\ell}^{2}(k)$$

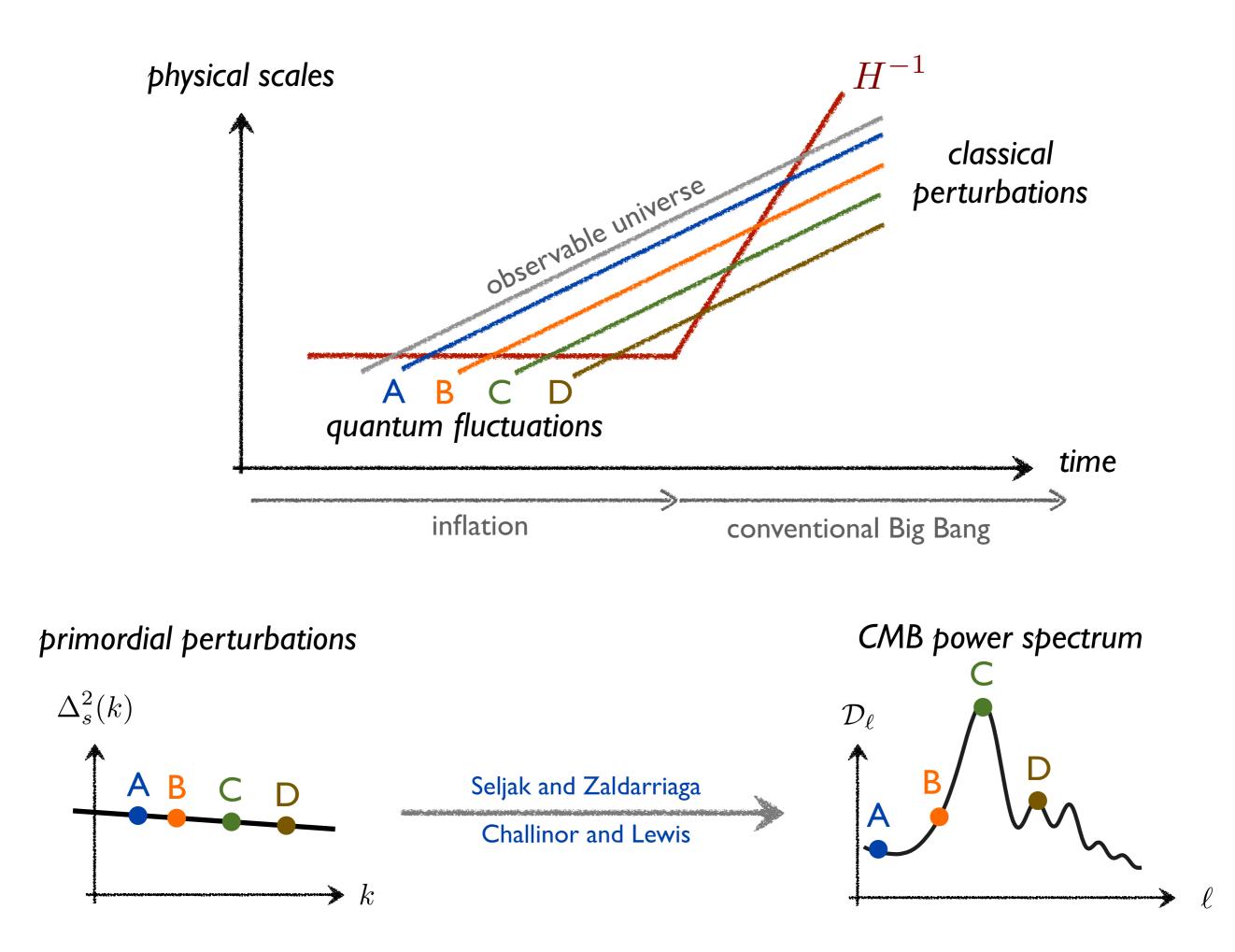
$$\overset{\text{evolution}}{\Delta_{\ell}(k) = T(k) \times j_{\ell}(kr_{\star}) \leftarrow projection}$$

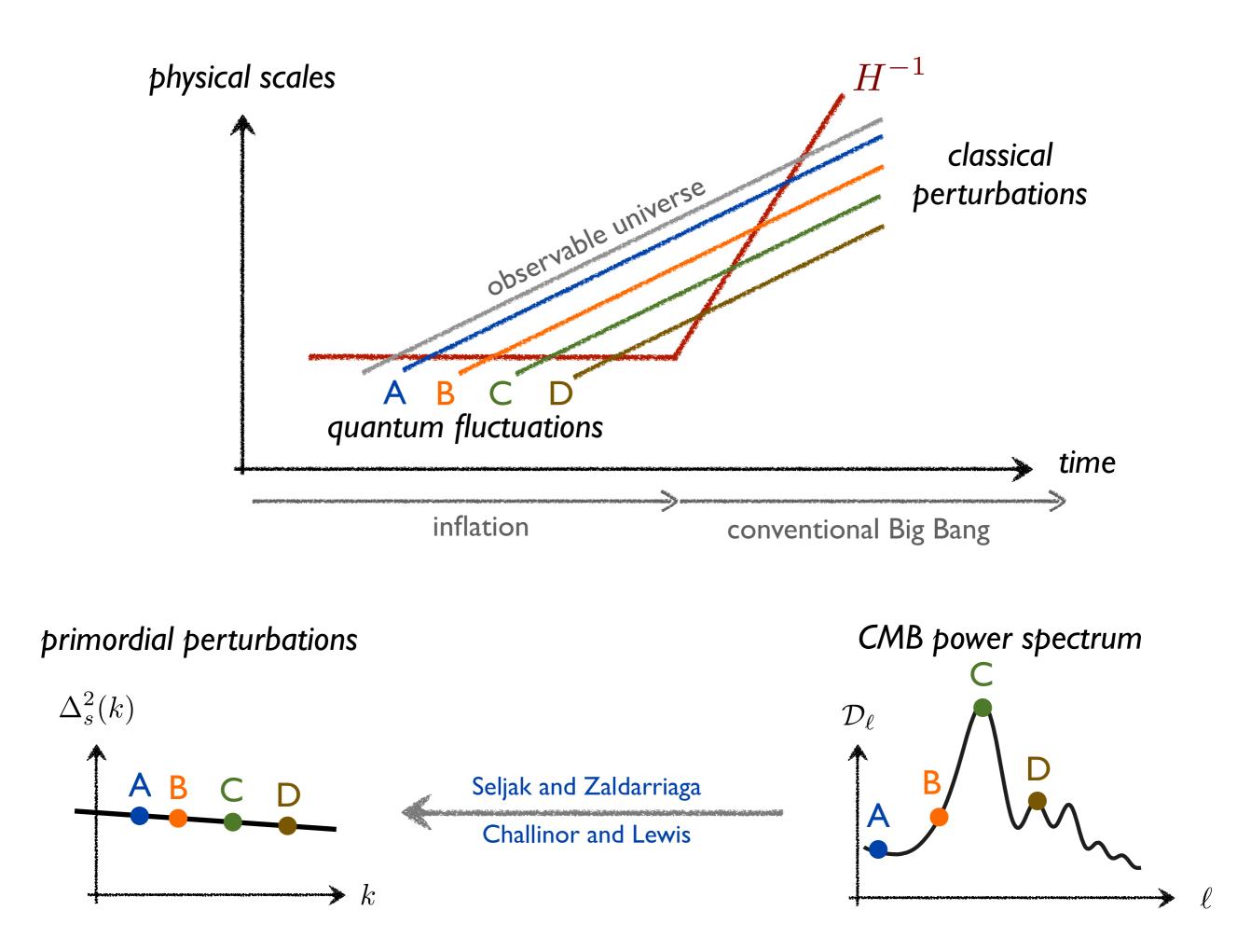
Bessel Projection

"
$$j_\ell^2(kr_\star)$$
 acts like $\delta(\ell-kr_\star)$ "



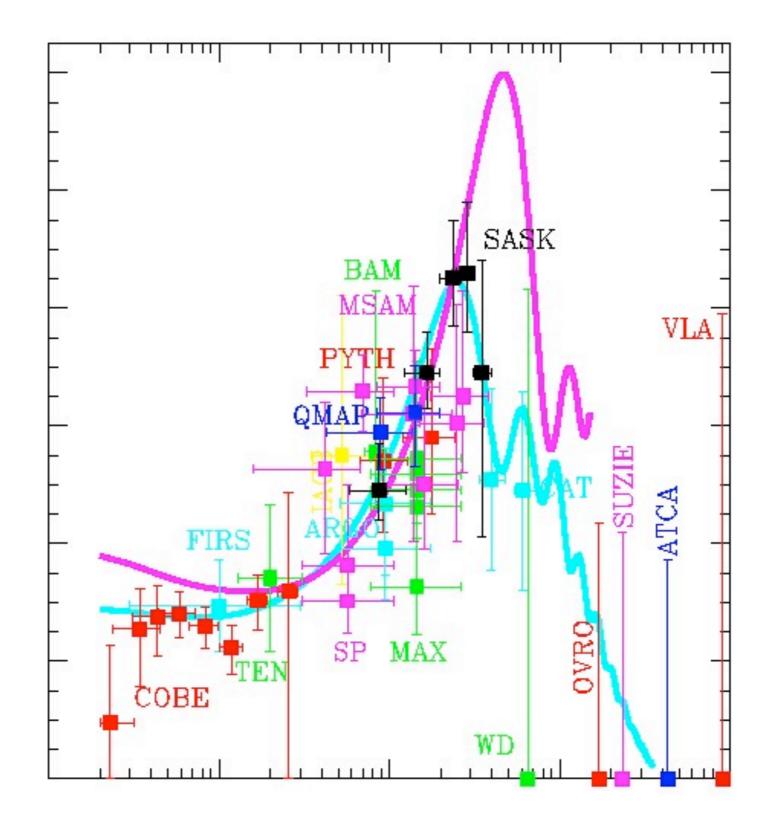
Summary



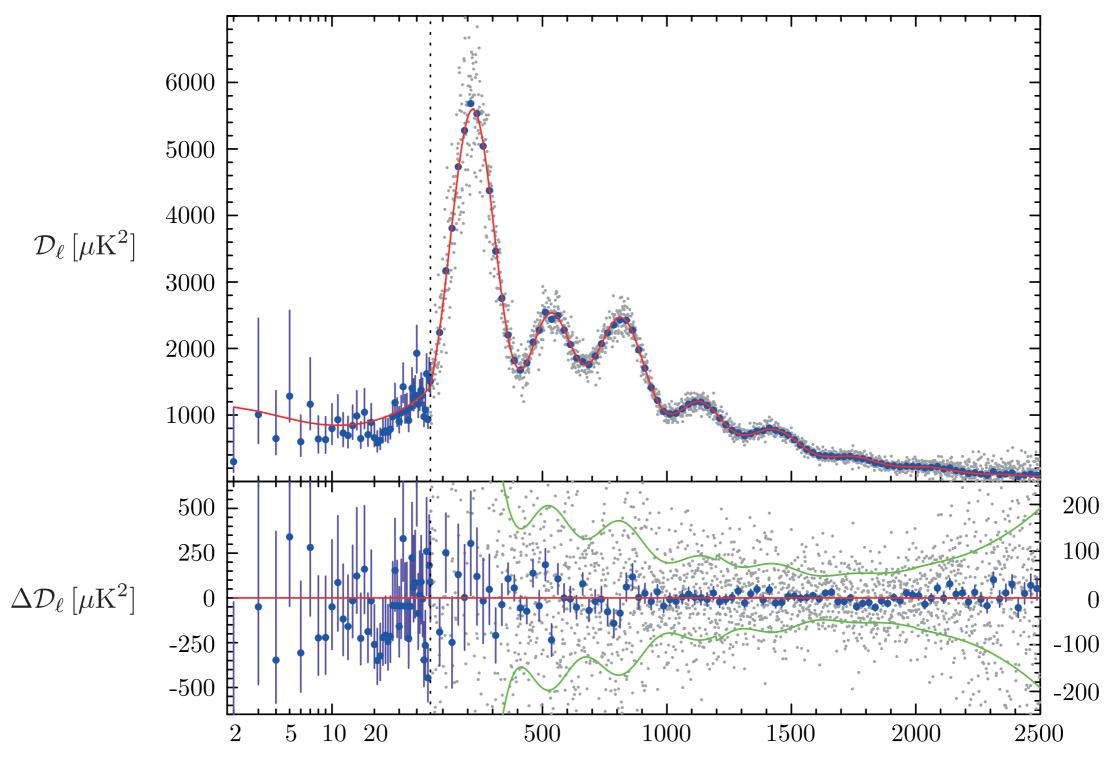


CMB Data

15 years ago



Today



Planck (Paper 16)

6-Parameter Fit

Baseline ACDM Model

4 parameters for the **background**:

- $\Omega_b = 0.045 \pm 0.001$ baryons
- $\Omega_m = 0.315 \pm 0.016$ dark matter

$$\Omega_{\Lambda} = 0.685 \pm 0.018$$
 dark energy

 $au = 0.089 \pm 0.014$ optical depth

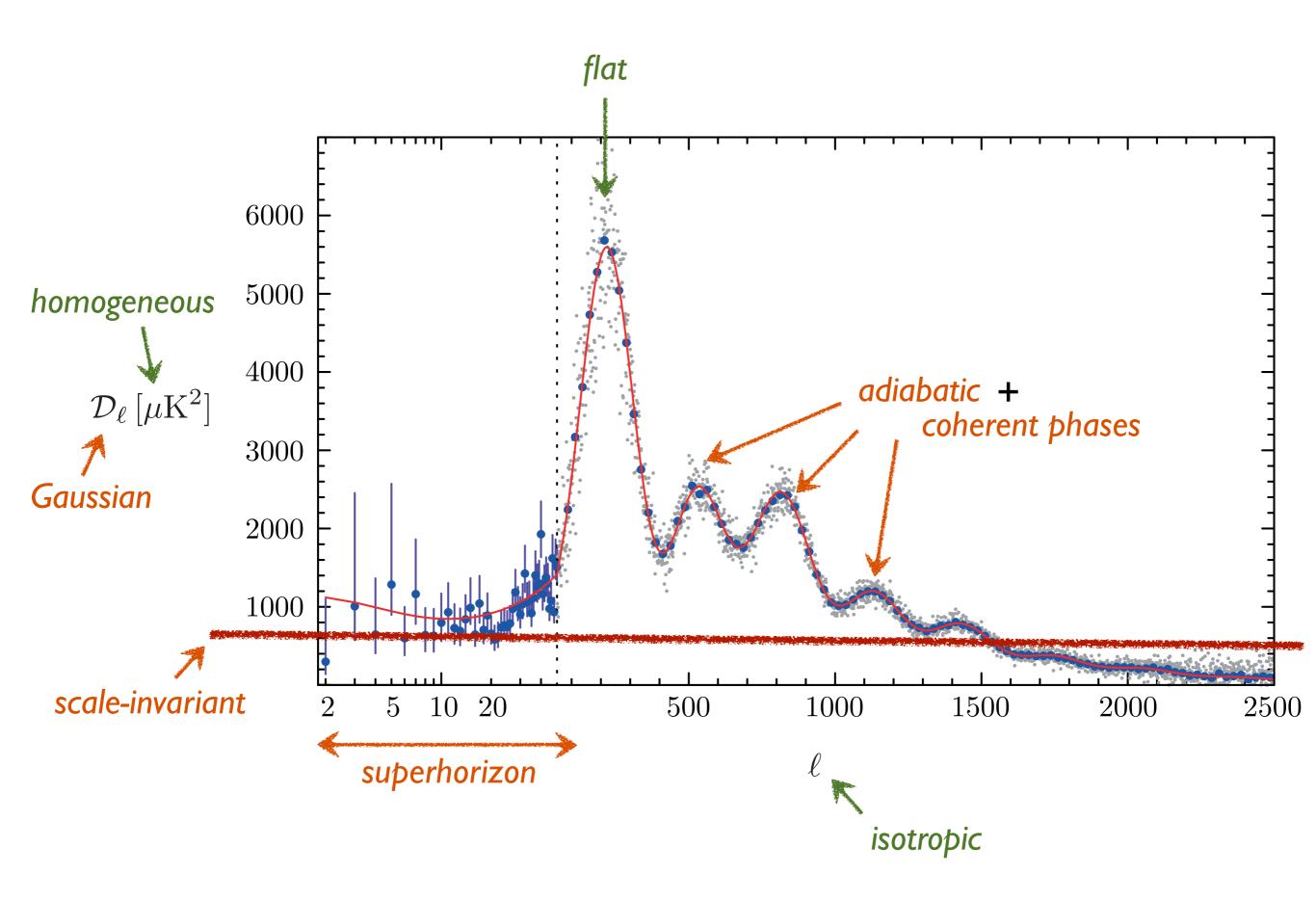
2 parameters for the **perturbations**:

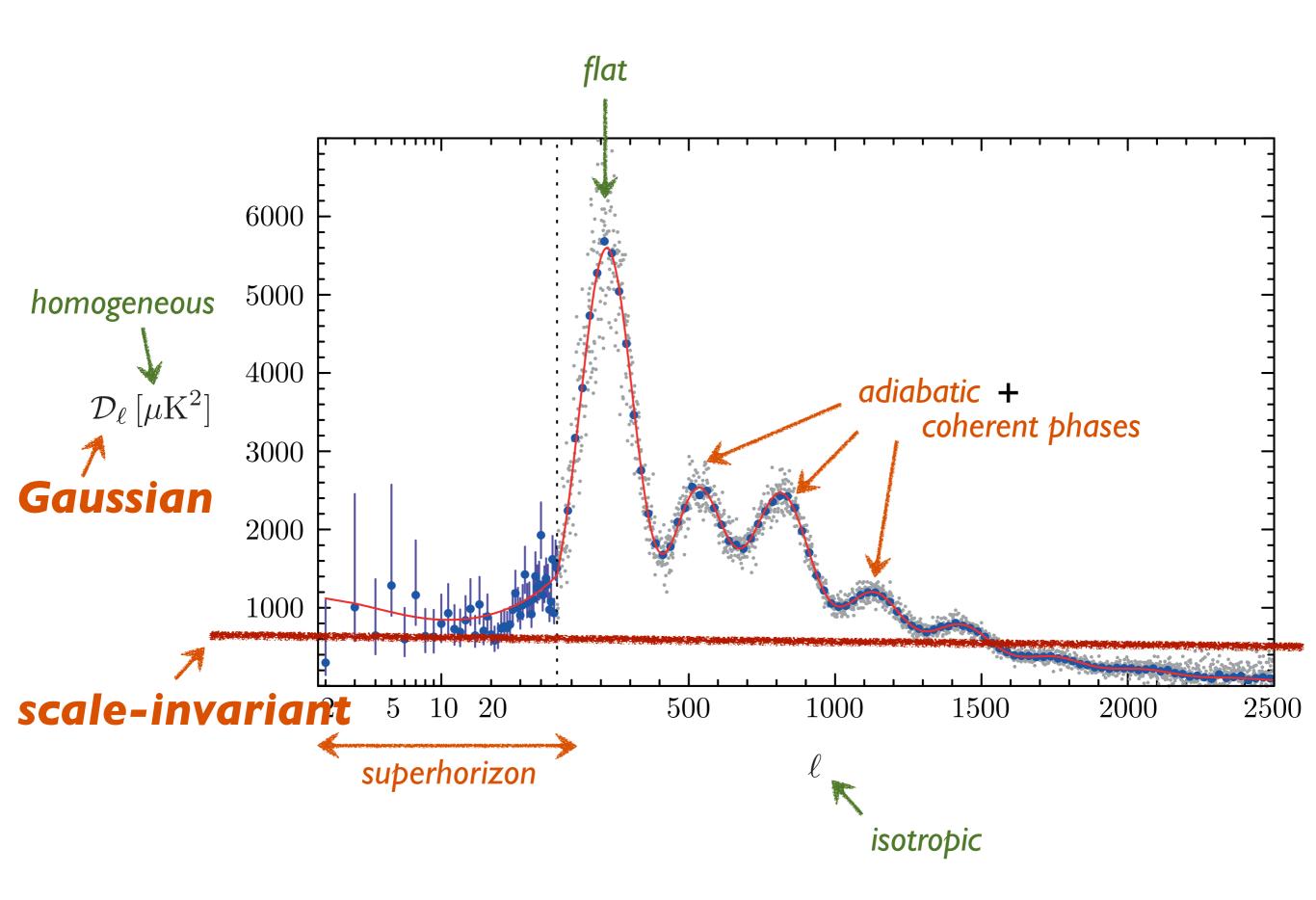
$$10^9 A_s = 2.20 \pm 0.11$$
 amplitude
 $n_s = 0.960 \pm 0.014$ spectral index

initial conditions

evolution

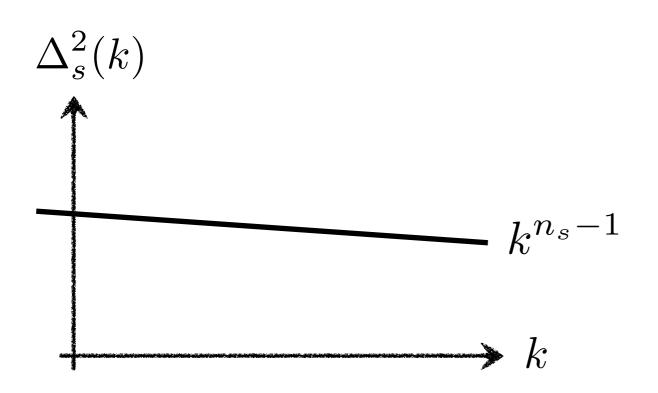
Inflation after Planck





Scale-Invariance

We expect the fluctuations from inflation to be nearly (but not exactly!) scale-invariant:

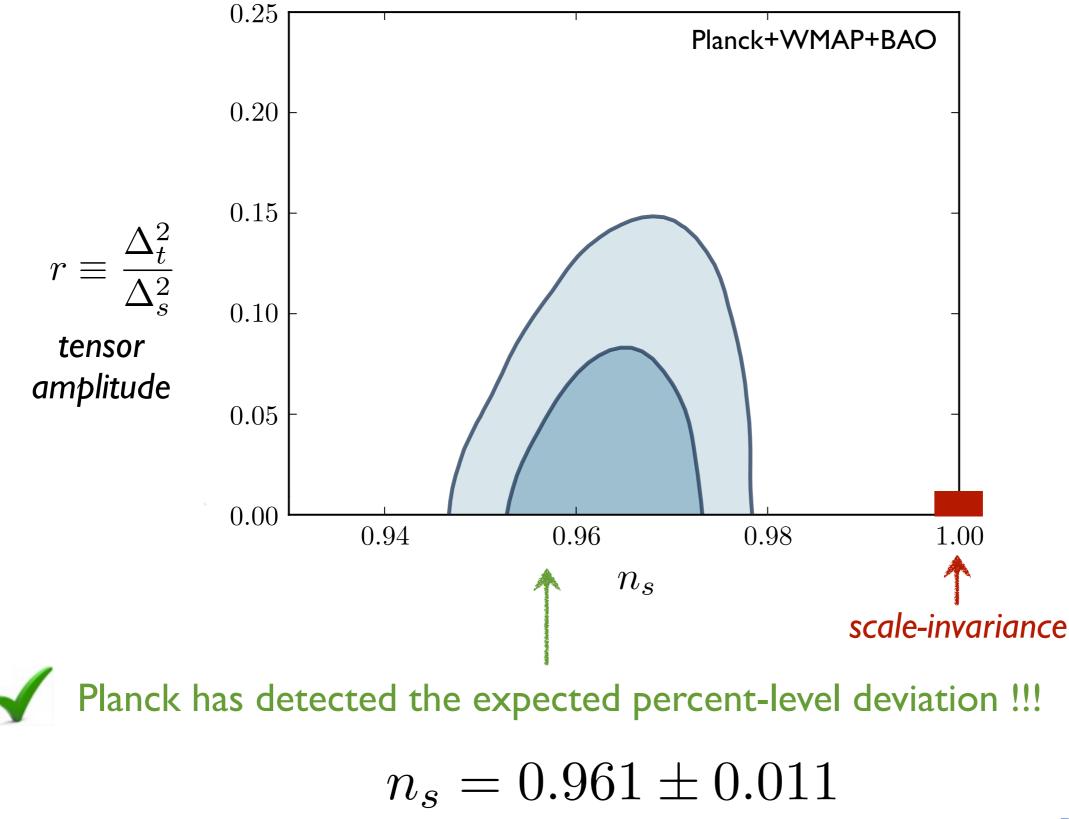


$$n_s - 1 \approx 4 \frac{\dot{H}}{H^2} - \frac{\ddot{H}}{\dot{H}H} \sim 0$$

The deviation from scale-invariance measures the dynamics during inflation:

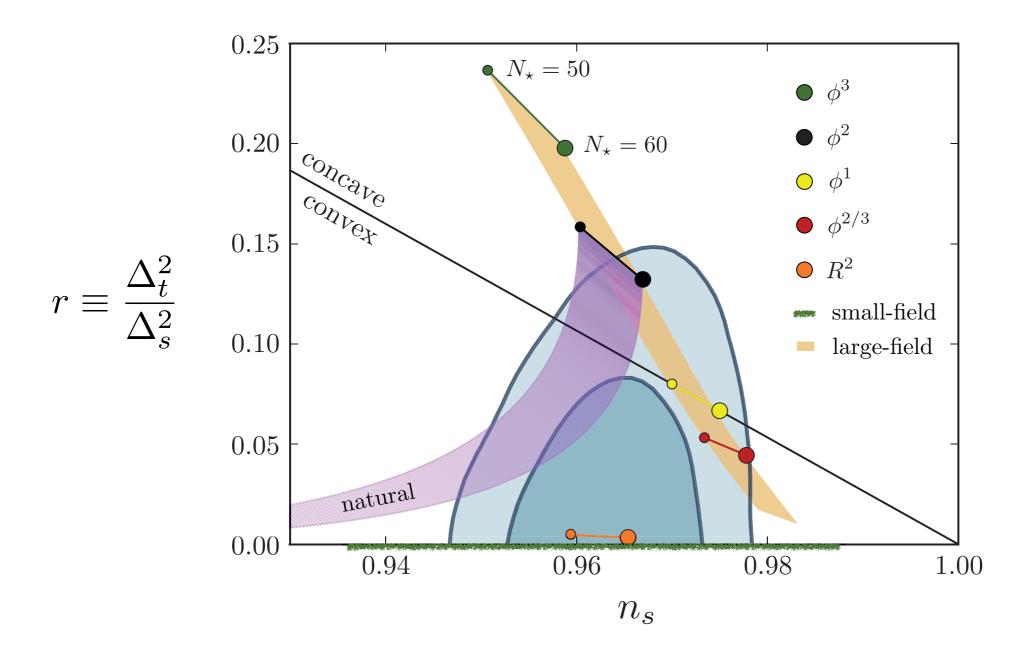
H(t)

Scale-Invariance



Planck (Paper 22)

Scale-Invariance



Many inflationary models are being tested. Some are falsified.

Planck (Paper 22)

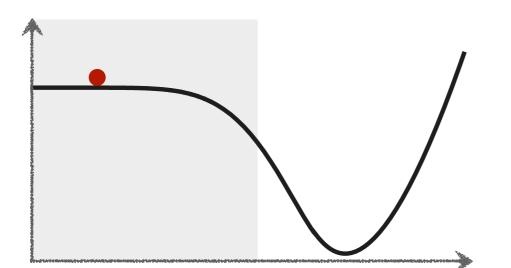
Gaussianity

The CMB is Gaussian to better than 0.1%.

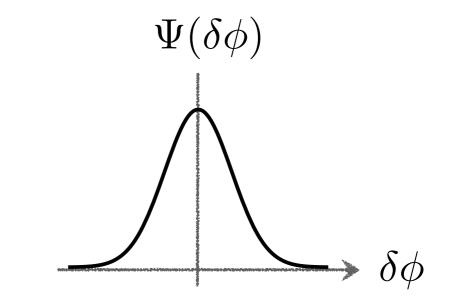
Planck (Paper 24)

Slow-roll inflation predicts Gaussian fluctuations:

Inflation only occurs on the flat part of the potential where the self-interactions of the field are small.



The wavefunction of a free field is Gaussian:

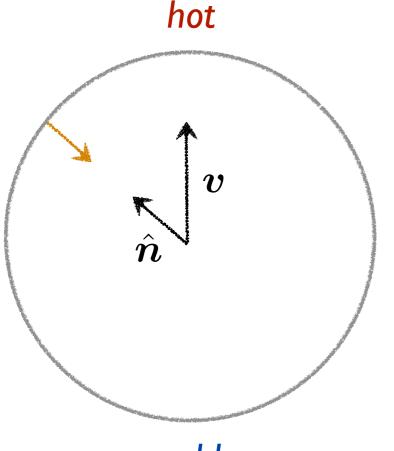


Extensions of slow-roll models can produce non-Gaussian fluctuations from interactions in the inflaton sector or couplings to other sectors.

see Leonardo's lecture

Appendix

The biggest effect is the motion of the solar system



The observed photon momentum is Doppler-shifted \downarrow $p_0 = p \left(1 + \hat{n} \cdot v\right)$

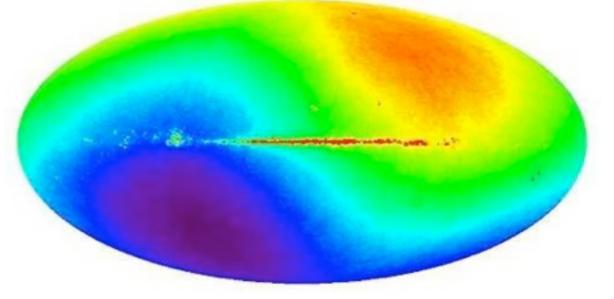
CMB rest frame

This corresponds to a large temperature dipole

$$\Theta_0(\hat{\boldsymbol{n}}) = \frac{T_0(\hat{\boldsymbol{n}}) - T}{T} = \frac{p_0(\hat{\boldsymbol{n}}) - p}{p} = \hat{\boldsymbol{n}} \cdot \boldsymbol{v}$$

cold

Fitting the CMB dipole, we find $v \approx 368 \, {\rm km/s}$



After removing the dipole, we are left with primordial anisotropy.

After decoupling, the photons travel along geodesics Newtonian gauge in an inhomogeneous spacetime $ds^{2} = (1 + 2\Psi)dt^{2} - a^{2}(t)(1 - 2\Phi)dx^{2}$ gravitational
curvature

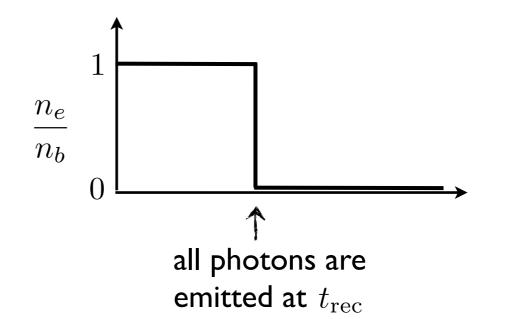
potential

perturbation

Ex: Using the geodesic equation, show that

$$\begin{aligned}
\frac{1}{p}\frac{dp}{dt} &= -\frac{1}{a}\frac{da}{dt} - \frac{\hat{p}^{i}}{a}\frac{\partial\Psi}{\partial x^{i}} + \frac{\partial\Phi}{\partial t} \\
\overset{\text{REDSHIFT}}{\overset{\text{REDSHIFT}}{\overset{\text{LENSING}}{\overset{\text{REDSHIFT}}{\overset{\text{REDS}}{\overset{\text{RES}}{\overset{\text{REDS}}{\overset{\text{RES}}}{\overset{\text{RES}}{\overset{\text{RES}}{\overset{\text{RES}}}{\overset{\text{RES}}{\overset{\text{RES}}{\overset{\text{RES}}{\overset{\text{RES}}}{\overset{\text{RES}}{\overset{\text{RES}}}{\overset{\text{RES}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{\text{RES}}}{\overset{RS}}{\overset{RS}}{\overset{RS}}}{\overset{RS}}{\overset{RS}}}{\overset{RS}}{\overset{RS}}}{\overset{RS}}{\overset{RS}}}{\overset{RS}}}{\overset{$$

For simplicity, we will assume instantaneous recombination :



Integrate eq. (1) from $t_{\rm rec}$ to t_0 :

$$\ln(ap)_{0} = \ln(ap)_{\rm rec} + (\Psi_{\rm rec} - \Psi_{0}) + \int_{t_{\rm rec}}^{t_{0}} dt (\dot{\Psi} + \dot{\Phi}) \longrightarrow ap \propto a\bar{T}(1 + \Theta)$$

$$\overset{\text{unobservable}}{\Theta_{0}} = \Theta_{\rm rec} + (\Psi_{\rm rec} - \Psi_{0}) + \int_{t_{\rm rec}}^{t_{0}} dt (\dot{\Psi} + \dot{\Phi}) \checkmark ap \propto a\bar{T}(1 + \Theta)$$

$$\overset{\text{with}}{= 0}$$

Hence, we get



Two steps: I) Compute sources at recombination. II) Project onto the sky.