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Has he walked into the wrong classroom? L
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What are glassy amorphous polymers?
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To give you an idea of the numbers involved...

For polystyrene:

1. Typical values of T, lie between 85.8 to

95.7 °C

2. Cooling rates between 0.0042 to 120 K/hour ]

yield amorphous structures.

Greiner and Schwarzl, 1984, Rheologica Acta, v23, */
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Polymer T,
PS 95.7 °C
PMMA | 103.7 °C
PVC 71.7°C
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Glassy polymers have much superior mechanical properties
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The nature of the stress strain curve has enormous

technological consequences
Yield drop Rehardening
Mominal
stress
f— -
Maminal strain

The stress strain curve gives amorphous polymers their

formability
']



Glassy polymers can undergo large plastic deformation
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Anand and Ames, 2006, Int J Plasticity, v22, p1123

‘ Motivation for doing MD 1:
Understanding mechanical behaviour esp < p

the origins of plasticity.




Motivation for doing MD 2: Mechanical
Property prediction
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Continuum mechanics in four minutes..

u(X, 1)
Vo
vy X z(X 1)
» L
X1
:L'(X-I—dX) =x+ FdX

—‘_F : Deformation gradient tensor




In indicial notation

(%i
F;; =
70X,
Alternately, since
xr =X +u,
F=1+Vu

or
Fij = dij + ui
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The concept of strain follows immediately

+—

d
G u(X, 1)
Vo
vy X x(X,1)
Ty ds®—dS? = dx-dr—dX-dX
— dX - (FTF—I) dX
T
! — 2X-E-dX
where |
E = (FTF _ I) |
is the Lagrangian strain tensor
TV e

TE o rac



Example: Pulling a block, uniaxial tension

X3, x3

The motion is given by

where




Example: Shearing a block

I3

The deformation map is

1 = X1+79X3
T2 = Xo
I3 = X3
such that
1 0 «v
F = 0O 1 0 =
0O 0 1




Understanding stress

Forces due to interaction with the
rest of the body

Inter-atomic forces that have been cut through can be

The components of the traction on all surfaces together constitute
the stress tensor 2

TE o rac




|
Newton’s second law: Rate of change of linear momentum equals the applied

force: N
— | pvdv = / tda + / bdv
Dt /V A% %
leads to D
v
X +b=p—.
V + P D

The material enters into the relation between the stress and the deformation

Y =|C|: FE,

Governs the constitutive response of the continuum




The macroscopic stress is the temporal and spatial
average of the microscopic atomistic stress ‘




What is o (2,7) ? A 0 K picture,
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The displacement of a point admits a multiscale expansion as:

A

u(z, 2,t) = u’(x,t) + eu' (z,2,1) + ...

Coarse grain displacement

At the coarse scale x

V-3 = pu,
At the fine scale & = x /¢
D Fij = miii;.
i

Note that we have considered pairwise forces only but this restriction can be
easily removed.
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If the continuum deforms homogeneously,

V- -¥~0().
Also,
p~ O(1).

and

Qppe ~ 0(63)

1 .
S50 Fiy=pii~ VB f; ~0(E),
-y

With a first order expansion of u (upto order €), and pbc, the stress measure

2Qpbc Z Z .fzg “ g

U )

satisfies the continuum equilibrium equation

V.Y —pu=0.




| T The uniaxial ‘experiment’

The No''o??T ensemble: see Yang et al., 1997, J. Chem. Phys, v107, pp4396

Ensemble with
pbc

Simulation has to proceed such that:

U\

E - 2Qpbczz ¥ z]
‘ 0 = 2Qpb szw Z]_QQb Zng Lijt )
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Deformation of long chained

molecules: Lessons from rubber JForcef
elasticity Rubber
of
For rubber <8T)l > 0
Kelvin (1857) Metals
— Metals

Temperature T
S

§

N

oy




JForce f

For a linear elastic metal
Rubber
e = € + el
where
eT = a AT
Metals
And thus, T

v

o= Fe— aEAT
Temperature T

Note: o« > 0




From first law of thermodynamics
dQ) = dU + dW
or for a reversible, constant volume process

0 = dG + SdT — fdl

JForce f
Rubber
Metals
—— Metals

Free energy G=U-TS Force
As all quantities are point functions
oG
(o )y = 7
oG
- = _9
<8T>T

(50)== )

Temperature T

—(5)e= (@) (G = 1= )t

v



f= <%—(lj>T+T <§_£>z
ya ™

; Entropy elastic
Energy elastic contribution to

contribution to |, -
force
(]

I u(r)




For a entropy elastic material (like rubber)

1= (G)e = 127 (),
(5r),> 0=

entropy | with deformation at a constant tem-
perature.

Y

Force f

m

— ()

l

Metals

v

Temperature T

With deformation a more ordered
structure emerges from a less ordered
one!

Metals: energy elastic
Rubber: entropy elastic

Polymers: energy elastic
at small strains. Behave
like rubber-elasticity at

large strains.




Statistics of long chained molecules: conformations

Polyethylene, the
simplest of the lot.

United atom model

CH2 - one united atom.

Bonds - a nonlinear spring

Energy minimised




Bond angle 4

Torsion angle

1 b




Freely jointed chain: all
torsion angles equally

&% probable

A real polymer chain has
preferred torsion angles,
is stiffer than a freely

jointed one.




Infinitely long polymer chains qualify as self avoiding
random walks. Therefore obey certain statistics even
they are locally not freely jointed.
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VNb (ry o< V' Nb

>

Radius of gyration

Centre Of <r2> 6
Mass
) Nz Debye(1946),
f Flory(1969)

A detailed MD ensemble of long macromolecules should obey these
statistics ensuring long range order.

e LA ;y
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One part of a polymer chain also interacts with another
part

ngth

L
—
.
. ."'\—-"'
—_

Van der Waals interactions
between monomers in the same
and neighbouring chains

- Dihedral angle




Essentials of a sample preparation process: ensure
equilibriation at short and long length scales

Total energy of an ensemble of macromolecules:

Nydw

U= Z Up(7[1.07)+ Z Uo(O11.7K7)+ Z Up(drrrxr))+ Z Upaw (T(101)-
[1.J]= [1JK]=1 IJKL]=1 [IM]=1
bond stretch I
O

valence angle
bend

O —




‘ Typical force fields:

Bond stretching:

1 2
Us(rin) = ko (ris — b)

Bond bending

1
UG(Q[IJK]) = §k0 (COS(O[IJK]) - 003(90))

Dihedral: .
1 1
Up(Dr17K1]) = 5141(1 + cos(Prrirr))) + 5142(1 — cos(2¢(rsk1]))
1
+ 5143(1 + cos(39117k1]))

Non-bonded

- 12 o 6
vt - [(:2)"- (2]
T'1M)] T[1M)
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Tests for long range equilibriation are based on statistics
of long chained molecules in an ensemble

For a freely jointed chain, the C

squared end-to-end distance of a & .
chain is: lim Cy = C

n—od

<7‘2>FJ INbQ

For a very long real chain, char-
acteristic ratio

Chain length n

.‘ Average over all segments of length n in the ensemble
I | *




Steps involved in equilibriation 7" > T

Build a single chain with the equilibrium bond
length, angle and dihedral distributions.

Conjugate gradient based energy mmlmlsatlon is
performed with end to end distance held at (

C..nb?.

The chain is further equilibriated using only 1 —5
non bonded interactions so that a large number of
chain conformations can be sampled. A chain is
chosen that is closest to the target structure.




Requisite number of replicas of the selected chain
are packed into a box with the box size correspond-
ing to an overall specified density. The chains are
then subjected to a zero temperature Monte Carlo
optimization whereby they are translated, rotated
and reflected with a view to reduce local density
fluctuations

A ‘slow push off’ is performed on the ensemble
using a force capped LJ potential U,qw. of the
form

S =) U (Tge) + Uvaw (rpe) 7 <7ye
Vvawe = { Upaw () r> Ty

typically, we gradually reduce r¢. from 21/65 to
0.8c in 10 stages. Again, only the 1—5 non-bonded
interaction is active.

vdWe




Finally, slow push off is followed by full MD equi-
libration for a long time with the full LJ potential

switched on.

Auhl et al., 2003, J. Chem. Phys., v119, pp12718; Mahajan and Basu, 2010,

Model. Svmul Mater Sc Engng, v18, pp025001
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Quench!

—A—N =20
145 —m-N =90
—@—N =200
L4E o N =500
L —%—N = 1000 Equilibriated
~— 1.35
samples
= 13

Glassy
samples

R

PE is semi-crystalline in reality but can be quenched to an amorphous glass at
the high quenching rates used in MD. The equilibriated structure at T" > T} is
presered in the glassy sample.

e



Pull under yx:1iy227
*Gaur and Wunderlich, 1980, Macromolecules, v13, pp44d

™ wiw MD Experiments
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The price of disobeying!
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Does the MD ensemble behave like a chunk of
continuum?

Recall that the underlying continuum deformation is homogeneous and is given
by

r1T = )\1X1
T2 = XXo
Iry = )\Xg

such that

B3 =22 1.




TThe local deformation gradient F'; is determined by minimising==

Il = Z Fi X — x5 - @

J€Q(Q) =




How big a sample to take ?

< L

\Ree

We check if, all things remaining equal, the mechanical response depends on

L/{

Ree).

., (MPa)
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simulations.



Sample sizes > 3 times the average end to end distance attains an
almost homogeneous strain distribution

0.5 -0.25 0 0.25 0.5 0.5 -0.25 0 0.25 0.5
5 . -0).5

0.5 0.5

0.25 0.25 0.25

1.05

1.00 0 ’ : II 0 ~

0.95 " ' i ﬂ
0.90 9,25 -0.25

0.85 — 38 v

0.80

0.25 0 0.25 0.5

A larger sample is more continuum-like.
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How fast should we quench and pull?

Real life quench rates are about 0.3 K/s = 0.3 x 10712 K /ps
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5 Rate of pulling has a significant etfect on the yield stress.
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’ Unrealsitic!
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‘ Conclusions: Now we can pull out numbers!

Suppose you wish to simulate a linear polymer of density 1000 kg/m?. Chain
length 1000 monomers, weight of each united atom 14 g/mol = 2.3 x 1072° kg.
Main chain bond length b = 1.53 angstrom

Expected end to end distance is (Re.) = v Nb? or 48.4 angstrom

Size of periodic box required 3 X (Ree) ~ 144 angstrom

Number of chains of 1000 united atoms/chain required is about 129, i.e an
ensemble with 129000 united atoms.

Safe strain rates A\ ~ e~/ ps™

Time required to impart a stretch of 2, i.e doubling of the box size, 2200 ps.




What we did not talk about ...

Coarse graining: the art and science of reducing
complicated linear architectures (PS, PC, PVC etc) to
polyethylene-like chains.

Primitive path analysis: Characterisation of the
entanglement network

Constitutive modelling: Extracting parameters of

continuum constitutive models from MD simulations
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