Understanding the Mechanical Behaviour of Glassy Amorphous Polymers through Molecular Dynamics Simulations

Sumit Basu

Associate Professor

Department of Mechanical Engineering

Indian Institute of Technology Kanpur

Kanpur 208016

Has he walked into the wrong classroom?

What are glassy amorphous polymers?

To give you an idea of the numbers involved...

For polystyrene:

- 1. Typical values of T_g lie between 85.8 to 95.7 $^{\rm o}{\rm C}$
- 2. Cooling rates between 0.0042 to 120 K/hour $_{\tt 0970}$ yield amorphous structures.

Greiner and Schwarzl, 1984, Rheologica Acta, v23, 996 p378

Q980 -						and a start
Q975 _	v,cm³/g ↓	-q,K/h 120 30 6 12 □- 0,042	PS		Sand and and	¢
0,970			1			
0,965 _		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			T, °C
	60	70	80	90	100	110

Polymer	T_g
PS	95.7 °C
PMMA	$103.7~^{\mathrm{o}}\mathrm{C}$
PVC	71.7 °C
PC	141.3 °C

The nature of the stress strain curve has enormous technological consequences

The stress strain curve gives amorphous polymers their *formability*

Glassy polymers can undergo large plastic deformation

Motivation for doing MD 1: Understanding mechanical behaviour esp the origins of plasticity.

THE OF TECHNOL

Example: Pulling a block, uniaxial tension

The motion is given by

where

$$\lambda_{\alpha} = \frac{L_{\alpha}}{L_{\alpha}^{0}}$$

Newton's second law: Rate of change of linear momentum equals the applied force:

$$\frac{D}{Dt} \int_{V} \rho \boldsymbol{v} dv = \int_{\partial V} \boldsymbol{t} da + \int_{V} \boldsymbol{b} dv$$

leads to

$$abla \cdot \mathbf{\Sigma} + \mathbf{b} =
ho rac{D \mathbf{v}}{D t}.$$

The material enters into the relation between the stress and the deformation

$$\boldsymbol{\Sigma} = \boldsymbol{C}: \boldsymbol{E},$$

Governs the constitutive response of the continuum

The displacement of a point admits a multiscale expansion as:

$$\boldsymbol{u}(\boldsymbol{x}, \hat{\boldsymbol{x}}, t) = \frac{\boldsymbol{u}^0(\boldsymbol{x}, t)}{\boldsymbol{u}^0(\boldsymbol{x}, t)} + \epsilon \boldsymbol{u}^1(\boldsymbol{x}, \hat{\boldsymbol{x}}, t) + \dots$$

Coarse grain displacement

At the coarse scale x

$$\nabla \cdot \boldsymbol{\Sigma} = \rho \ddot{\boldsymbol{u}},$$

At the fine scale $\hat{\boldsymbol{x}} = \boldsymbol{x}/\epsilon$

$$\sum_{i
eq j} oldsymbol{f}_{ij} = m_i \ddot{oldsymbol{u}}_i.$$

Note that we have considered pairwise forces only but this restriction can be easily removed.

If the continuum deforms homogeneously,

Also,

$$\begin{split} \nabla \cdot \boldsymbol{\Sigma} &\sim \mathcal{O}(1). \\ \text{and} \\ & \Omega_{pbc} \sim \mathcal{O}(\epsilon^3) \\ & \frac{1}{\epsilon^3} \sum_{i \neq j} \boldsymbol{f}_{ij} = \rho \ddot{\boldsymbol{u}}_i \sim \nabla \cdot \boldsymbol{\Sigma} \Rightarrow \boldsymbol{f}_{ij} \sim \mathcal{O}(\epsilon^3). \end{split}$$

With a first order expansion of \boldsymbol{u} (up to order $\boldsymbol{\epsilon}$), and pbc, the stress measure

$$\boldsymbol{\Sigma} = rac{1}{2\Omega_{pbc}} \sum_{i} \sum_{j
eq i} \boldsymbol{f}_{ij} \otimes \boldsymbol{x}_{ij}.$$

satisfies the continuum equilibrium equation

$$\nabla \cdot \boldsymbol{\Sigma} - \rho \ddot{\boldsymbol{u}} = 0.$$

The uniaxial 'experiment'

Note: $\alpha > 0$

Temperature T

From first law of thermodynamics

$$dQ = dU + dW$$

or for a reversible, constant volume process

As all quantities are point functions

$$\begin{pmatrix} \frac{\partial G}{\partial l} \end{pmatrix}_T = f \\ \left(\frac{\partial G}{\partial T} \right)_T = -S$$

Temperature T

$$\Rightarrow \qquad \left(\frac{\partial S}{\partial l}\right)_T = -\left(\frac{\partial f}{\partial T}\right)_l \\ - \left(\frac{\partial G}{\partial l}\right)_T = \left(\frac{\partial U}{\partial l}\right)_T - T\left(\frac{\partial S}{\partial l}\right)_T, \quad \Rightarrow \quad f = \left(\frac{\partial U}{\partial l}\right)_T + T\left(\frac{\partial f}{\partial T}\right)_l \\ - \left(\frac{\partial G}{\partial l}\right)_T = \left(\frac{\partial U}{\partial l}\right)_T - T\left(\frac{\partial S}{\partial l}\right)_T, \quad \Rightarrow \quad f = \left(\frac{\partial U}{\partial l}\right)_T + T\left(\frac{\partial f}{\partial T}\right)_l + C\left(\frac{\partial F$$

For a entropy elastic material (like rubber)

$$\begin{split} f \simeq -T \left(\frac{\partial S}{\partial l} \right)_T, \; \Rightarrow \; & f \simeq T \left(\frac{\partial f}{\partial T} \right)_l \\ & \left(\frac{\partial f}{\partial T} \right)_l > 0 \Rightarrow \end{split}$$

entropy \downarrow with deformation at a constant temperature.

Temperature T

With deformation a more ordered structure emerges from a less ordered one!

Metals: energy elastic

Rubber: entropy elastic

Polymers: energy elastic at small strains. Behave like rubber-elasticity at large strains.

Statistics of long chained molecules: conformations

Polyethylene, the simplest of the lot.

United atom model

CH2 \rightarrow one united atom.

Bonds \rightarrow a nonlinear spring

A detailed MD ensemble of long macromolecules should obey these statistics ensuring long range order.

Essentials of a sample preparation process: ensure equilibriation at short and long length scales

Total energy of an ensemble of macromolecules:

Typical force fields:

Bond stretching:

$$U_b(r_{[IJ]}) = \frac{1}{2}k_b \left(r_{[IJ]} - b\right)^2$$

Bond bending

$$U_{\theta}(\theta_{[IJK]}) = \frac{1}{2} k_{\theta} \left(\cos(\theta_{[IJK]}) - \cos(\theta_0) \right)$$

Dihedral:

$$U_{\phi}(\phi_{[IJKL]}) = \frac{1}{2}A_1(1 + \cos(\phi_{[IJKL]})) + \frac{1}{2}A_2(1 - \cos(2\phi_{[IJKL]})) + \frac{1}{2}A_3(1 + \cos(3\phi_{[IJKL]}))$$

Non-bonded

$$U_{vdW}(r_{[IM]}) = 4\epsilon \left[\left(\frac{\sigma}{r_{[IM]}} \right)^{12} - \left(\frac{\sigma}{r_{[IM]}} \right)^6 \right]$$

Tests for long range equilibriation are based on statistics of long chained molecules in an ensemble

For a freely jointed chain, the squared end-to-end distance of a chain is:

$$\langle r^2 \rangle_{FJ} = Nb^2$$

For a very long real chain, characteristic ratio

 $C_{\infty} = \frac{\langle r^2 \rangle}{\langle r^2 \rangle_{FI}}$

 $C_n = \langle r_n^2 \rangle / \langle r^2 \rangle_{FJ}$

Requisite number of replicas of the selected chain are packed into a box with the box size corresponding to an overall specified density. The chains are then subjected to a zero temperature Monte Carlo optimization whereby they are translated, rotated and reflected with a view to reduce local density fluctuations

A 'slow push off' is performed on the ensemble using a force capped LJ potential U_{vdWc} of the form

$$U_{vdWc} = \begin{cases} (r - r_{fc})U'_{vdW}(r_{fc}) + U_{vdW}(r_{fc}) & r < r_{fc} \\ U_{vdW}(r) & r \ge r_{fc} \end{cases}$$

typically, we gradually reduce r_{fc} from $2^{1/6}\sigma$ to 0.8σ in 10 stages. Again, only the 1-5 non-bonded interaction is active.

Finally, slow push off is followed by full MD equilibration for a long time with the full LJ potential switched on.

Auhl et al., 2003, J. Chem. Phys., v119, pp12718; Mahajan and Basu, 2010, Model. Simul Mater Sc Engng, v18, pp025001

PE is semi-crystalline in reality but can be quenched to an amorphous glass at the high quenching rates used in MD. The equilibriated structure at $T > T_g$ is preserved in the glassy sample.

Pull under $N\Sigma^{11}\Sigma^{22}T$

*Gaur and Wunderlich, 1980, Macromolecules, v13, pp445

Does the MD ensemble behave like a chunk of continuum?

Recall that the underlying continuum deformation is homogeneous and is given by

$$\begin{array}{rcl} x_1 &=& \lambda_1 X_1 \\ x_2 &=& \lambda_2 X_2 \\ x_3 &=& \lambda X_3 \end{array}$$

such that

$$E^{33} = \lambda^2 - 1.$$

>= 3.8

 $< R_{ee} >= 1.7$

-1.2

-1.4

300

200

100

-0.2

-0.4

-0.6

-0.8

 $\ln(\lambda)$

 $L/\langle R_{ee}\rangle \sim 3$ is needed for a smooth stress strain response \Rightarrow ensembles longer chains need bigger boxes. more monomers and expensive hence more simulations.

Sample sizes > 3 times the average end to end distance attains an almost homogeneous strain distribution

A larger sample is more continuum-like.

Conclusions: Now we can pull out numbers!

Suppose you wish to simulate a linear polymer of density 1000 kg/m³. Chain length 1000 monomers, weight of each united atom 14 g/mol = 2.3×10^{-26} kg. Main chain bond length b = 1.53 angstrom

Expected end to end distance is $\langle R_{ee} \rangle = \sqrt{N}b^2$ or 48.4 angstrom

Size of periodic box required $3 \times \langle R_{ee} \rangle \simeq 144$ angstrom

Number of chains of 1000 united atoms/chain required is about 129, i.e an ensemble with 129000 united atoms.

Safe strain rates $\dot{\lambda} \sim e^{-7} \text{ ps}^{-1}$.

Time required to impart a stretch of 2, i.e doubling of the box size, 2200 ps.

<u>Coarse graining</u>: the art and science of reducing complicated linear architectures (PS, PC, PVC etc) to polyethylene-like chains.

<u>Primitive path analysis</u>: Characterisation of the entanglement network

<u>Constitutive modelling</u>: Extracting parameters of continuum constitutive models from MD simulations

