

Numerical methods for EIT

Kim Knudsen Technical University of Denmark kiknu@dtu.dk

Advanced Instructional School of Theoretical and Numerical Aspects of Inverse Problems Bangalore June 16-27, 2014

Outline

- 1. The Calderón problem and linearization
- 2. The CGO-method for reconstruction in 2D
- 3. The CGO-method for reconstruction in 3D
- 4. The Calderón problem with partial data

Mathematical model for EIT

Smooth bounded domain $\Omega \subset \mathbb{R}^3,$ conductivity coefficient

 $\mathbf{0} < \mathbf{c} \leq \sigma \leq \mathbf{C} < \infty; \qquad \sigma \equiv 1 \text{ near } \partial \Omega.$

Voltage potential u in Ω generated by boundary voltage potential f

$$abla \cdot \sigma
abla u = 0 \text{ in } \Omega,$$

 $u|_{\partial \Omega} = f.$

Current field: $J = \sigma \nabla u$. Normal component of current field at $\partial \Omega$:

$$\boldsymbol{g} = \boldsymbol{\nu} \cdot \boldsymbol{J} = \sigma \partial_{\boldsymbol{\nu}} \boldsymbol{u}|_{\partial \Omega}.$$

Dirichlet to Neumann (voltage to current) map

$$\Lambda_{\sigma} \colon f \mapsto g.$$

Complex Geometrical Optics solutions and the scattering transform

Let

$$q = \Delta \sigma^{1/2} / \sigma^{1/2} \Leftrightarrow (-\Delta + q) \sigma^{1/2} = 0.$$

Complex Geometrical Optics (CGO) solutions $\psi(x, \zeta), \ \zeta \in \mathbb{C}^n, \ \zeta \cdot \zeta = 0$:

$$(-\Delta + q)\psi(x,\zeta) = 0$$
 in \mathbb{R}^n ,
 $\psi(x,\zeta) \approx e^{ix\cdot\zeta}$ for large $|x|$ or $|\zeta|$.

Scattering transform for $\zeta^2 = (\xi + \zeta)^2 = 0$

$$\begin{split} \mathbf{t}(\xi,\zeta) &= \left\langle (\Lambda_{\sigma} - \Lambda_{1})\psi(x,\zeta)|_{\partial\Omega}, \boldsymbol{e}^{i\boldsymbol{x}\cdot(\overline{\zeta}+\xi)} \right\rangle \\ &= \int_{\Omega} \boldsymbol{e}^{-i\boldsymbol{x}\cdot(\xi+\zeta)} \boldsymbol{q}(x)\psi(x,\zeta) \boldsymbol{d}x. \end{split}$$

Complex Geometrical Optics solutions and the scattering transform

Let

$$q = \Delta \sigma^{1/2} / \sigma^{1/2} \Leftrightarrow (-\Delta + q) \sigma^{1/2} = 0.$$

Complex Geometrical Optics (CGO) solutions $\psi(x, \zeta), \ \zeta \in \mathbb{C}^n, \ \zeta \cdot \zeta = 0$:

$$(-\Delta + q)\psi(x,\zeta) = 0 \text{ in } \mathbb{R}^n,$$

 $\psi(x,\zeta) \approx e^{ix\cdot\zeta} \text{ for large } |x| \text{ or } |\zeta|.$

Scattering transform for $\zeta^2 = (\xi + \zeta)^2 = 0$

$$\begin{split} \mathbf{t}(\xi,\zeta) &= \left\langle (\Lambda_{\sigma} - \Lambda_{1})\psi(x,\zeta)|_{\partial\Omega}, \boldsymbol{e}^{i\boldsymbol{x}\cdot(\overline{\zeta}+\xi)} \right\rangle \\ &= \int_{\Omega} \boldsymbol{e}^{-i\boldsymbol{x}\cdot(\xi+\zeta)} \boldsymbol{q}(x)\psi(x,\zeta) \boldsymbol{d}x. \end{split}$$

Assume no exceptional points, i.e. $\mathbf{t}(\xi, \zeta)$ defined for all ξ, ζ . Numerical methods for EIT

Choice of ζ

For fixed $\xi \in \mathbb{R}^3$ we need $\zeta \in \mathbb{C}^3$ such that

$$\zeta \cdot \zeta = (\zeta + \xi) \cdot (\zeta + \xi) = \mathbf{0}.$$

Choice of $\boldsymbol{\zeta}$

For fixed $\xi \in \mathbb{R}^3$ we need $\zeta \in \mathbb{C}^3$ such that

$$\zeta \cdot \zeta = (\zeta + \xi) \cdot (\zeta + \xi) = \mathbf{0}.$$

Consequently

$$\begin{split} \zeta &= -\frac{\xi}{2} + \kappa k + i(\kappa^2 + \frac{1}{4})^{1/2} k^{\perp}, \qquad k, \ k^{\perp} \in \mathbb{R}^3: \\ & \xi \cdot k = \xi \cdot k^{\perp} = k \cdot k^{\perp} = 0. \end{split}$$

Choice of ζ

For fixed $\xi \in \mathbb{R}^3$ we need $\zeta \in \mathbb{C}^3$ such that

$$\zeta \cdot \zeta = (\zeta + \xi) \cdot (\zeta + \xi) = \mathbf{0}.$$

Consequently

$$\begin{split} \zeta &= -\frac{\xi}{2} + \kappa k + i(\kappa^2 + \frac{1}{4})^{1/2} k^{\perp}, \qquad k, \ k^{\perp} \in \mathbb{R}^3: \\ & \xi \cdot k = \xi \cdot k^{\perp} = k \cdot k^{\perp} = 0. \end{split}$$

- Works in 3 and more dimensions; not 2D
- In theory: $\kappa \to \infty$
- Numerically:
 - Consistent with theory: take κ large. Highly unstable.
 - For stability reasons fix $\kappa = 0$: $|\zeta|^2 = |\xi|^2/2$.

$$\Lambda_{\sigma} \xrightarrow{1.} \mathbf{t}(\xi, \zeta) \xrightarrow{2.} q(x) \xrightarrow{3.} \sigma(x)$$

$$\Lambda_{\sigma} \xrightarrow{1.} \mathbf{t}(\xi, \zeta) \xrightarrow{2.} q(x) \xrightarrow{3.} \sigma(x)$$

1. Solve for $\psi|_{\partial\Omega}$ boundary integral equation

$$\psi + \mathcal{S}_{\zeta}(\Lambda_{\sigma} - \Lambda_{1})\psi = e^{i x \cdot \zeta}, \qquad x \in \partial \Omega$$

and compute scattering transform

$$\mathbf{t}(\xi,\zeta) = \left\langle (\Lambda_{\sigma} - \Lambda_{1})\psi(\mathbf{x},\zeta)|_{\partial\Omega}, e^{i\mathbf{x}\cdot(\overline{\zeta}+\xi)} \right\rangle.$$

$$\Lambda_{\sigma} \xrightarrow{1.} \mathbf{t}(\xi, \zeta) \xrightarrow{2.} q(x) \xrightarrow{3.} \sigma(x)$$

1. Solve for $\psi|_{\partial\Omega}$ boundary integral equation

$$\psi + \mathcal{S}_{\zeta}(\Lambda_{\sigma} - \Lambda_{1})\psi = \boldsymbol{e}^{i\boldsymbol{x}\cdot\boldsymbol{\zeta}}, \qquad \boldsymbol{x}\in\partial\Omega$$

and compute scattering transform

$$\mathbf{t}(\xi,\zeta) = \left\langle (\Lambda_{\sigma} - \Lambda_{1})\psi(\mathbf{x},\zeta)|_{\partial\Omega}, \mathbf{e}^{i\mathbf{x}\cdot(\overline{\zeta}+\xi)} \right\rangle.$$

2. Compute *q* by the limit

$$\lim_{|\zeta|\to\infty} \mathbf{t}(\xi,\zeta) = \hat{q}(\xi)$$

and inverse Fourier transform.

$$\Lambda_{\sigma} \xrightarrow{1.} \mathbf{t}(\xi, \zeta) \xrightarrow{2.} q(x) \xrightarrow{3.} \sigma(x)$$

1. Solve for $\psi|_{\partial\Omega}$ boundary integral equation

$$\psi + \mathcal{S}_{\zeta}(\Lambda_{\sigma} - \Lambda_{1})\psi = \boldsymbol{e}^{i\boldsymbol{x}\cdot\boldsymbol{\zeta}}, \qquad \boldsymbol{x}\in\partial\Omega$$

and compute scattering transform

$$\mathbf{t}(\xi,\zeta) = \left\langle (\Lambda_{\sigma} - \Lambda_{1})\psi(\mathbf{x},\zeta)|_{\partial\Omega}, e^{i\mathbf{x}\cdot(\overline{\zeta}+\xi)} \right\rangle.$$

2. Compute q by the limit

$$\lim_{|\zeta|\to\infty} \mathbf{t}(\xi,\zeta) = \hat{q}(\xi)$$

and inverse Fourier transform.

3. Solve for σ

$$(-\Delta + q)\sigma^{1/2} = 0$$
 in Ω , $\sigma^{1/2}|_{\partial\Omega} = 1$.

Regularization by spectral truncation

Noise model

$$\Lambda_{\sigma}^{\varepsilon} = \Lambda_{\sigma} + E, \ \|E\| < \varepsilon.$$

For fixed truncation R_{ϵ} define the regularized algorithm:

1. Solve the noisy boundary integral equation

$$\psi_{\zeta}^{\varepsilon}(\mathbf{x}) + [\mathcal{S}_{\zeta}(\Lambda_{\sigma}^{\varepsilon} - \Lambda_{1})\psi_{\zeta}^{\varepsilon}](\mathbf{x}) = \mathbf{e}^{i\mathbf{x}\cdot\zeta} \ , \ \mathbf{x}\in\partial\Omega, \ |\zeta| < R_{\varepsilon}/2,$$

and compute

$$\mathbf{t}^{\varepsilon}(\xi,\zeta) = \begin{cases} \int_{\partial\Omega} e^{-ix \cdot (\xi+\zeta)} [(\Lambda_{\sigma}^{\varepsilon} - \Lambda_{1})\psi_{\zeta}^{\varepsilon}](x) \, dS(x), & |\xi| < R_{\varepsilon} \\ 0, & |\xi| \ge R_{\varepsilon}. \end{cases}$$

Regularization by spectral truncation

Noise model

$$\Lambda_{\sigma}^{\varepsilon} = \Lambda_{\sigma} + E, \ \|E\| < \varepsilon.$$

For fixed truncation R_{ϵ} define the regularized algorithm:

1. Solve the noisy boundary integral equation

$$\psi_{\zeta}^{\varepsilon}(\mathbf{x}) + [\mathcal{S}_{\zeta}(\Lambda_{\sigma}^{\varepsilon} - \Lambda_{1})\psi_{\zeta}^{\varepsilon}](\mathbf{x}) = \mathbf{e}^{i\mathbf{x}\cdot\zeta} \ , \ \mathbf{x}\in\partial\Omega, \ |\zeta| < R_{\varepsilon}/2,$$

and compute

$$\mathbf{t}^{\varepsilon}(\xi,\zeta) = \begin{cases} \int_{\partial\Omega} e^{-ix \cdot (\xi+\zeta)} [(\Lambda_{\sigma}^{\varepsilon} - \Lambda_{1})\psi_{\zeta}^{\varepsilon}](x) \, dS(x), & |\xi| < R_{\varepsilon} \\ 0, & |\xi| \ge R_{\varepsilon}. \end{cases}$$

2. Define q^{ε} through $\widehat{q^{\varepsilon}}(\xi) = \mathbf{t}^{\varepsilon}(\xi, \zeta)$.

Regularization by spectral truncation

Noise model

$$\Lambda_{\sigma}^{\varepsilon} = \Lambda_{\sigma} + E, \ \|E\| < \varepsilon.$$

For fixed truncation R_{ϵ} define the regularized algorithm:

1. Solve the noisy boundary integral equation

$$\psi^{arepsilon}_{\zeta}(\pmb{x}) + [\mathcal{S}_{\zeta}(\Lambda^{arepsilon}_{\sigma} - \Lambda_1)\psi^{arepsilon}_{\zeta}](\pmb{x}) = \pmb{e}^{i\pmb{x}\cdot\zeta} \;,\; \pmb{x}\in\partial\Omega,\;\; |\zeta| < \pmb{R}_{arepsilon}/2,$$

and compute

$$\mathbf{t}^{\varepsilon}(\xi,\zeta) = \begin{cases} \int_{\partial\Omega} e^{-ix \cdot (\xi+\zeta)} [(\Lambda_{\sigma}^{\varepsilon} - \Lambda_{1})\psi_{\zeta}^{\varepsilon}](x) \, dS(x), & |\xi| < R_{\varepsilon} \\ 0, & |\xi| \ge R_{\varepsilon}. \end{cases}$$

- 2. Define q^{ε} through $\widehat{q^{\varepsilon}}(\xi) = \mathbf{t}^{\varepsilon}(\xi, \zeta)$.
- 3. Compute σ^{ε} by solving

$$(-\Delta + q^{\varepsilon})(\sigma^{\varepsilon})^{1/2} = 0$$
 in Ω , $(\sigma^{\varepsilon})^{1/2} = 1$ on $\partial\Omega$.

We define the regularized inversion operator Γ_R by $\Gamma_R(\Lambda_\sigma) = \sigma^{\varepsilon}$. Numerical methods for EIT

Regularization strategy

Theorem: [Delbary, Hansen, K. 2013] Γ_R is a regularization strategy for Λ with admissible parameter choice rule $R = R(\varepsilon) = C |\log \varepsilon|$.

Regularization strategy

Theorem: [Delbary, Hansen, K. 2013] Γ_R is a regularization strategy for Λ with admissible parameter choice rule $R = R(\varepsilon) = C |\log \varepsilon|$.

Consequence: For any fixed σ

1. Reconstruction from exact data:

$$\lim_{R\to\infty} \Gamma_R(\Lambda_{\sigma}) = \sigma.$$

2. Reconstruction when $\epsilon \rightarrow 0$:

$$\limsup_{\varepsilon\to 0} \{ \| \Gamma_{R(\varepsilon)}(\Lambda_{\sigma} + E) - \sigma \| \mid \|E\| < \varepsilon \} = 0.$$

Computation and representation of Λ_{σ}

Implementation in the case $\Omega = B(0, 1)$.

Well-chosen grid points on the unit sphere $x_{m,n} = (\sin \theta_m \cos \varphi_n, \sin \theta_m \sin \varphi_n, \cos \theta_m)$.

From grid values $f(x_{m,n})$ approximate $[(\Lambda_{\sigma} - \Lambda_1)f](x_{m,n})$:

 \rightarrow matrix approximation of $\Lambda_{\sigma} - \Lambda_1$.

Obtained by solving the forward problem:

- 1. Moment Method (globally varying σ) or
- 2. Boundary Element Method (piecewise constant σ).

The single layer potential

We need to solve on $\partial \Omega$

$$\psi + oldsymbol{\mathcal{S}}_{\zeta}(oldsymbol{\Lambda}_{\sigma} - oldsymbol{\Lambda}_{1})\psi = oldsymbol{e}^{ioldsymbol{x}\cdot\zeta}, \qquad oldsymbol{x}\in\partial\Omega$$

with S_{ζ} the single-layer potential with kernel G_{ζ} .

The single layer potential

We need to solve on $\partial \Omega$

$$\psi + oldsymbol{S}_{\zeta}(oldsymbol{\Lambda}_{\sigma} - oldsymbol{\Lambda}_{1})\psi = oldsymbol{e}^{joldsymbol{x}\cdot \zeta}, \qquad oldsymbol{x} \in \partial \Omega$$

with S_{ζ} the single-layer potential with kernel G_{ζ} .

Note that

$$G_{\zeta}(x) = G_0(x) + H_{\zeta}(x)$$

with

$$G_0(x) = 1/(4\pi |x|)$$

So

$$\psi + (S_0 + \mathcal{H}_{\zeta})(\Lambda_{\sigma} - \Lambda_1)\psi = e^{ix \cdot \zeta}, \qquad x \in \partial \Omega$$

with S_0 the single-layer potential.

Numerical integration on the sphere

Quadrature points

 $x_{mn} = (\sin \theta_m \cos \varphi_n, \sin \theta_m \sin \varphi_n, \cos \theta_m), \quad 0 \le m \le N, 0 \le n \le 2N + 1,$ where

 $\theta_m = \arccos t_m,$ t_m : increasing N + 1 zeros of Legendre polynomial of degree $N + 1 P_{N+1}.$ $\varphi_n = \pi n/(N+1)$

Numerical integration on the sphere

Quadrature points

 $x_{mn} = (\sin \theta_m \cos \varphi_n, \sin \theta_m \sin \varphi_n, \cos \theta_m), \quad 0 \le m \le N, 0 \le n \le 2N + 1,$ where

 $\theta_m = \arccos t_m,$ t_m : increasing N + 1 zeros of Legendre polynomial of degree $N + 1 P_{N+1}.$ $\varphi_n = \pi n/(N+1)$

Gauss-Legendre quadrature rule of order N + 1 on [-1, 1]

$$\int_{\partial\Omega} \psi \, ds \simeq \frac{\pi}{N+1} \sum_{m=0}^{N} \sum_{n=0}^{2N+1} \alpha_m \psi(x_{mn}) , \ \psi \in C^0(\partial\Omega),$$

Weigths: $\alpha_k = \frac{2(1-t_k^2)}{(N+1)^2 [P_N(t_k)]^2}.$

Exact for spherical harmonics of degree less than or equal to 2N + 1. Numerical methods for EIT

Hyperinterpolation

We wish to expand functions using the projection operator on $L^2(\partial\Omega)$

$$T_N\phi = \sum_{n=0}^N \sum_{m=-n}^n \langle \phi, Y_n^m \rangle Y_n^m$$

Inner product approximated by quadrature rule defines the hyperinterpolation operator

$$L_N\phi = \frac{\pi}{N+1}\sum_{n=0}^N\sum_{m=-n}^n\sum_{k=0}^N\sum_{\ell=0}^{2N+1}\alpha_k\phi(x_{k\ell})Y_n^{-m}(x_{k\ell})Y_n^m, \ \phi \in C^0(\partial\Omega).$$

Well suited since singular part $S_0 Y_n^m$ can be calculated explicitly:

$$S_0Y_n^m(x)=\frac{1}{4\pi}\int_{\partial\Omega}\frac{Y_n^m(y)}{|x-y|}\,dS(y)=\frac{1}{2n+1}Y_n^m(x)\;,\;x\in\partial\Omega.$$

Discrete equation

Approximate $\psi^{N} \approx \psi$:

$$\psi + S_{\zeta}(\Lambda_{\sigma} - \Lambda_{1})\psi = e^{i\mathbf{x}\cdot\zeta}, \qquad \mathbf{x} \in \partial\Omega$$

Discrete system

$$[I + S_{\zeta} L_N (\Lambda_{\sigma} - \Lambda_1) L_N] \psi^N = \boldsymbol{e}^{i \boldsymbol{x} \cdot \zeta}.$$

Discrete equation

Approximate $\psi^{N} \approx \psi$:

$$\psi + S_{\zeta}(\Lambda_{\sigma} - \Lambda_{1})\psi = e^{i\mathbf{x}\cdot\zeta}, \qquad \mathbf{x} \in \partial\Omega$$

Discrete system

$$[I + S_{\zeta} L_N (\Lambda_{\sigma} - \Lambda_1) L_N] \psi^N = e^{i x \cdot \zeta}.$$

Convergence rates: For any s > 3/2

$$\|\psi^{\mathsf{N}}-\psi\|_{\mathcal{H}^{\mathsf{s}}(\partial\Omega)}\leq rac{\mathsf{C}}{\mathsf{N}^{\mathsf{s}-3/2}}\|m{e}^{\mathsf{i}\mathbf{x}\cdot\zeta}\|_{\mathcal{H}^{\mathsf{s}}(\partial\Omega)}$$

where *C* may depend on $s, \zeta, \sigma, .$

The scattering transform (radial profile)

Figure: Reconstructed scattering transforms and the Fourier transform. Upper row: $|\zeta|$ large and fixed, lower row $|\zeta|$ minimal. Left column no noise, right column 0.1% noise.

Reconstruction of radial profile

Figure: Reconstructions of radial conductivities. Upper row: $|\zeta|$ fixed, lower row $|\zeta|$ minimal. Left column no noise and truncation parameter K = 8, right column 0.1% noise and K = 6.

Phantom

3D phantom Profile

Support

Increasing regularization R

Increasing regularization R

Large vs. minimal $|\zeta|$

Figure: Cross sectional plot of reconstruction σ . Upper row $|\zeta|$ large (K = 10, 12); lower row $|\zeta|$ small with (K = 12, 14).

Linearization vs. CGO, R = 12, 2048 boundary points

Linearization $\sigma^{\rm Cal}$ CGO method σ

Noise (0.1%), R = 6, 968 boundary points

Conclusions

- Numerical implementation by F. Delbary
- CGO method works well
- When is CGO method worth the effort?
- Theory for $|\zeta|$ minimal choice
- Explicitly build in prior information?
- Partial data?