Numerical methods for EIT

Kim Knudsen
Technical University of Denmark
kiknu@dtu.dk

Advanced Instructional School of Theoretical and Numerical Aspects of
Inverse Problems
Bangalore
June 16-27, 2014

Outline

1. The Calderón problem and linearization
2. The CGO-method for reconstruction in 2D
3. The CGO-method for reconstruction in 3D
4. The Calderón problem with partial data

Mathematical model for EIT

Smooth bounded domain $\Omega \subset \mathbb{R}^{2}$, conductivity coefficient

$$
0<c \leq \sigma \leq C<\infty ; \quad \sigma \equiv 1 \text { near } \partial \Omega .
$$

Voltage potential u in Ω generated by boundary voltage potential f

$$
\begin{aligned}
\nabla \cdot \sigma \nabla u & =0 \text { in } \Omega, \\
\left.u\right|_{\partial \Omega} & =f .
\end{aligned}
$$

Current field: $J=\sigma \nabla u$.

Normal component of current field at $\partial \Omega$:

$$
g=\nu \cdot J=\left.\sigma \partial_{\nu} u\right|_{\partial \Omega} .
$$

Dirichlet to Neumann (voltage to current) map

$$
\Lambda_{\sigma}: f \mapsto g .
$$

2. The CGO-method for reconstruction in 2D (aka Dbar method)

The Schrödinger equation

Equivalent problem for Schrödinger equation: $v=\sigma^{-1 / 2} u$

$$
(-\Delta+q) v=0 \text { in }\left.\Omega \quad v\right|_{\partial \Omega}=f
$$

with

$$
q=\Delta \sigma^{1 / 2} / \sigma^{1 / 2} \Leftrightarrow(-\Delta+q) \sigma^{1 / 2}=0 .
$$

The Schrödinger equation

Equivalent problem for Schrödinger equation: $v=\sigma^{-1 / 2} u$

$$
(-\Delta+q) v=0 \text { in }\left.\Omega \quad v\right|_{\partial \Omega}=f
$$

with

$$
q=\Delta \sigma^{1 / 2} / \sigma^{1 / 2} \Leftrightarrow(-\Delta+q) \sigma^{1 / 2}=0 .
$$

Dirichlet to Neumann map:

$$
\Lambda_{q} f=\left.\frac{\partial v}{\partial \nu}\right|_{\partial \Omega}=\left.\frac{\sigma}{\partial u} \partial \nu\right|_{\partial \Omega}=\Lambda_{\sigma} f
$$

Identity

$$
\left\langle\left(\Lambda_{\sigma}-\Lambda_{\sigma_{0}}\right) f_{1}, f_{0}\right\rangle=\int_{\Omega}\left(q_{1}-q_{0}\right) v_{1} \overline{v_{0}} d x
$$

with

$$
\left(-\Delta+q_{j}\right) v_{j}=0 \text { in }\left.\Omega \quad v_{j}\right|_{\partial \Omega}=f_{j} .
$$

For $\sigma_{0}=1, q_{0}=0$:

$$
\left\langle\left(\Lambda_{\sigma}-\Lambda_{1}\right) f_{1}, f_{0}\right\rangle=\int_{\Omega} q v_{1} \overline{v_{0}} d x
$$

Complex Geometrical Optics solutions

$$
\left\langle\left(\Lambda_{\sigma}-\Lambda_{1}\right) f_{1}, f_{0}\right\rangle=\int_{\Omega} q v_{1} \overline{v_{0}} d x
$$

Choose

$$
\begin{aligned}
v_{1}(x, \zeta) & \approx e^{i x \cdot \zeta}, \quad \zeta \cdot \zeta=0 \\
v_{0}(x) & =e^{i x \cdot(\xi+\bar{\zeta})}, \quad(\xi+\zeta) \cdot(\xi+\zeta)=0
\end{aligned}
$$

Complex Geometrical Optics solutions

$$
\left\langle\left(\Lambda_{\sigma}-\Lambda_{1}\right) f_{1}, f_{0}\right\rangle=\int_{\Omega} q v_{1} \overline{v_{0}} d x .
$$

Choose

$$
\begin{aligned}
v_{1}(x, \zeta) & \approx e^{i x \cdot \zeta}, \\
v_{0}(x) & =e^{i x \cdot(\xi+\bar{\zeta})}, \quad(\xi+\zeta) \cdot(\xi+\zeta)=0 .
\end{aligned}
$$

Complex Geometrical Optics (CGO)solutions $\psi(x, \zeta), \zeta \in \mathbb{C}^{n}, \zeta \cdot \zeta=0$:

$$
\begin{array}{r}
(-\Delta+q) \psi(x, \zeta)=0 \text { in } \mathbb{R}^{n}, \\
\psi(x, \zeta) \approx e^{i x \cdot \zeta} \text { for large }|x| \text { or }|\zeta| .
\end{array}
$$

Complex Geometrical Optics solutions

$$
\left\langle\left(\Lambda_{\sigma}-\Lambda_{1}\right) f_{1}, f_{0}\right\rangle=\int_{\Omega} q v_{1} \overline{v_{0}} d x
$$

Choose

$$
\begin{aligned}
v_{1}(x, \zeta) & \approx e^{i x \cdot \zeta}, \quad \zeta \cdot \zeta=0 \\
v_{0}(x) & =e^{i x \cdot(\xi+\bar{\zeta})}, \quad(\xi+\zeta) \cdot(\xi+\zeta)=0
\end{aligned}
$$

Complex Geometrical Optics (CGO)solutions $\psi(x, \zeta), \zeta \in \mathbb{C}^{n}, \zeta \cdot \zeta=0$:

$$
\begin{array}{r}
(-\Delta+q) \psi(x, \zeta)=0 \text { in } \mathbb{R}^{n} \\
\psi(x, \zeta) \approx e^{i x \cdot \zeta} \text { for large }|x| \text { or }|\zeta| .
\end{array}
$$

Write $\psi(x, \zeta)=e^{i x \cdot \zeta}(1+\omega(x, \zeta))$; then

$$
(-\Delta-2 i \zeta \cdot \nabla+q) \omega=-q
$$

Faddeev's Green's function

Faddeev's Green's functions

$$
\begin{aligned}
& g_{\zeta}(x)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \frac{e^{i x \cdot k}}{|p|^{2}+2 p \cdot \zeta} d p, x \in \mathbb{R}^{d} \backslash\{0\}, \\
& G_{\zeta}(x)=e^{i x \cdot \zeta} g_{\zeta}(x), \quad \Delta G_{\zeta}=\delta, \quad G_{\zeta} \sim e^{i x \cdot \zeta} .
\end{aligned}
$$

Faddeev's Green's function

Faddeev's Green's functions

$$
\begin{aligned}
& g_{\zeta}(x)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \frac{e^{i x \cdot k}}{|p|^{2}+2 p \cdot \zeta} d p, x \in \mathbb{R}^{d} \backslash\{0\}, \\
& G_{\zeta}(x)=e^{i x \cdot \zeta} g_{\zeta}(x), \quad \Delta G_{\zeta}=\delta, \quad G_{\zeta} \sim e^{i x \cdot \zeta}
\end{aligned}
$$

Then ψ, ω must satisfy the Lippmann-Schwinger-Faddeev equation

$$
\begin{aligned}
& \psi(x, \zeta)=e^{i x \cdot \zeta}+\int_{\Omega} G_{\zeta}(x-y) q(y) \psi(y, \zeta) d x \\
& \omega(x, \zeta)=-g_{\zeta} * q+\int_{\Omega} g_{\zeta}(x-y) q(y) \omega(y, \zeta)
\end{aligned}
$$

1. In 2D this equation is uniquely solvable for all ζ.
2. In 3D this equation is uniquely solvable for $|\zeta|$ large (or small).

Faddeev's Green's function

Faddeev's Green's functions

$$
\begin{aligned}
& g_{\zeta}(x)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \frac{e^{i x \cdot k}}{|p|^{2}+2 p \cdot \zeta} d p, x \in \mathbb{R}^{d} \backslash\{0\}, \\
& G_{\zeta}(x)=e^{i x \cdot \zeta} g_{\zeta}(x), \quad \Delta G_{\zeta}=\delta, \quad G_{\zeta} \sim e^{i x \cdot \zeta}
\end{aligned}
$$

Then ψ, ω must satisfy the Lippmann-Schwinger-Faddeev equation

$$
\begin{aligned}
& \psi(x, \zeta)=e^{i x \cdot \zeta}+\int_{\Omega} G_{\zeta}(x-y) q(y) \psi(y, \zeta) d x \\
& \omega(x, \zeta)=-g_{\zeta} * q+\int_{\Omega} g_{\zeta}(x-y) q(y) \omega(y, \zeta)
\end{aligned}
$$

1. In 2 D this equation is uniquely solvable for all ζ.
2. In 3D this equation is uniquely solvable for $|\zeta|$ large (or small).

And

$$
\|\omega\|_{L^{2}(\Omega)} \leq \frac{C}{|\zeta|}
$$

$\left.\psi\right|_{\partial \Omega}$ at the boundary

Then $\left.\psi\right|_{\partial \Omega}$ satisfies for fixed $\zeta \in \mathbb{C}^{n}$ the boundary integral equation

$$
\psi(x, \zeta)+\int_{\partial \Omega} G_{\zeta}(x-y)\left(\Lambda_{\gamma}-\Lambda_{1}\right) \psi(y, \zeta) d s=e^{i x \cdot \zeta}, \quad x \in \partial \Omega
$$

Written in terms of layer potentials

$$
\psi+S_{\zeta}\left(\Lambda_{\gamma}-\Lambda_{1}\right) \psi=e^{i x \cdot \zeta}, \quad x \in \partial \Omega
$$

This is a solvable Fredholm equation of the second kind.

$\left.\psi\right|_{\partial \Omega}$ at the boundary

Then $\left.\psi\right|_{\partial \Omega}$ satisfies for fixed $\zeta \in \mathbb{C}^{n}$ the boundary integral equation

$$
\psi(x, \zeta)+\int_{\partial \Omega} G_{\zeta}(x-y)\left(\Lambda_{\gamma}-\Lambda_{1}\right) \psi(y, \zeta) d s=e^{i x \cdot \zeta}, \quad x \in \partial \Omega .
$$

Written in terms of layer potentials

$$
\psi+S_{\zeta}\left(\Lambda_{\gamma}-\Lambda_{1}\right) \psi=e^{i x \cdot \zeta}, \quad x \in \partial \Omega .
$$

This is a solvable Fredholm equation of the second kind.
Conclusion: from data we can find $\left.\psi\right|_{\partial \Omega}$.
Solving the equation is severely ill-posed!

The scattering transform

Introduce intermediate object, non-physical scattering/Fourier transform

$$
\begin{aligned}
\mathbf{t}(\xi, \zeta) & =\left\langle\left(\Lambda_{\sigma}-\Lambda_{1}\right) \psi(\cdot, \zeta), e^{i x \cdot(x+\bar{\zeta})}\right\rangle \\
& =\int_{\Omega} e^{-i x \cdot(\xi+\zeta)} q(x) \psi(x, \zeta) d x
\end{aligned}
$$

The scattering transform

Introduce intermediate object, non-physical scattering/Fourier transform

$$
\begin{aligned}
\mathbf{t}(\xi, \zeta) & =\left\langle\left(\Lambda_{\sigma}-\Lambda_{1}\right) \psi(\cdot, \zeta), e^{i x \cdot(x+\bar{\zeta})}\right\rangle \\
& =\int_{\Omega} e^{-i x \cdot(\xi+\zeta)} q(x) \psi(x, \zeta) d x
\end{aligned}
$$

t satisfies the estimate

$$
|\hat{q}(\xi)-\mathbf{t}(\xi, \zeta)|=\mathcal{O}(1 /|\zeta|)
$$

Reconstruction algorithm

$$
\Lambda_{\gamma} \rightarrow \mathbf{t}(\xi, \zeta) \rightarrow \gamma(x)
$$

Second step depends on 2D or 3D.

Reconstruction method in 2D

Parameterize $\zeta=(k, i k), k \in \mathbb{C}$ and put $x=x_{1}+x_{2}$.
The Dbar reconstruction algorithm

1. Solve the boundary integral equation (BIE)

$$
\psi+S_{k}\left(\Lambda_{\sigma}-\Lambda_{1}\right) \psi=e^{i x k}, \quad x \in \partial \Omega,
$$

and compute

$$
\mathbf{t}(k)=\int_{\partial \Omega} e^{i \bar{k} \bar{x}}\left(\Lambda_{\sigma}-\Lambda_{1}\right) \psi(\cdot, k) d \sigma .
$$

Reconstruction method in 2D

Parameterize $\zeta=(k, i k), k \in \mathbb{C}$ and put $x=x_{1}+x_{2}$.
The Dbar reconstruction algorithm

1. Solve the boundary integral equation (BIE)

$$
\psi+S_{k}\left(\Lambda_{\sigma}-\Lambda_{1}\right) \psi=e^{i x k}, \quad x \in \partial \Omega,
$$

and compute

$$
\mathbf{t}(k)=\int_{\partial \Omega} e^{i \bar{k} \bar{x}}\left(\Lambda_{\sigma}-\Lambda_{1}\right) \psi(\cdot, k) d \sigma .
$$

2. Solve the Dbar equation

$$
\bar{\partial}_{k} \mu(x, k)=\frac{1}{4 \pi \bar{k}} \mathbf{t}(k) e_{-x}(k) \overline{\mu(x, k)}, \quad k \in \mathbb{C},
$$

with $e_{-x}(k):=e^{-i(k x+\bar{k} \bar{x})} ;$ then $\sigma(x)=\mu(x, 0)^{2}$.

Remarks

- Solving boundary integral equation is exponentially ill-posed.
- Solving dbar-equation is well-posed
- Reconstruction method is exact for $\sigma \in W^{1+\epsilon, p}(\Omega), p>2$.

Numerical details (unit disk)

1. Represent DN-map in Fourier basis $\left\{e^{i n \theta}\right\}$

$$
\left(\Lambda_{\sigma}-\Lambda_{1}\right) e^{i m \theta}=\sum_{n} c_{n} e^{i n \theta}
$$

Requires solution of BVP by FEM.
2. Expand all terms in BIE in Fourier basis.
3. After trunctaion we obtain matrix equation

$$
A c=b
$$

solve i.e. iteratively (GMRES).
III posedness is handled in two ways:

- Upper limit on number of basis functions.
- Truncation for $|k|<R$.

Numerical solution of the $\bar{\partial}$-equation

For the scattering / inverse scattering problem solving a $\bar{\partial}$-equation is important. We will now consider the numerical solution of such an equation: We would like to solve the integral equation

$$
\begin{equation*}
v(k)=1-\frac{1}{\pi} \int_{\mathbb{R}^{2}} \frac{T\left(k^{\prime}\right)}{k-k^{\prime}} \bar{v}\left(k^{\prime}\right) d k_{1}^{\prime} d k_{2}^{\prime}, \quad k=k_{1}^{\prime}+i k_{2}^{\prime} \in \mathbb{C}, \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
v(k)=1-g *(T(k) \overline{v(k)}) . \tag{2}
\end{equation*}
$$

Assume that T is compactly supported in a bounded domain Ω.

Discretization

Let $S=[-s, s]^{2}$ be a square such that $\bar{\Omega} \subset S$. Choose $m \in \mathbb{Z}_{+}, M=2^{m}, h=2 s / M$. Define a grid $\mathcal{G}_{m} \subset S$ by

$$
\begin{aligned}
& \mathcal{G}_{m}=\left\{j h \mid j \in \mathbb{Z}_{m}^{2}\right\}, \\
& \mathbb{Z}_{m}^{2}=\left\{j=\left(j_{1}, j_{2}\right) \in \mathbb{Z}^{2} \mid-2^{m-1} \leq j_{l}<2^{m-1}\right\} .
\end{aligned}
$$

Grid approximation $\phi_{h}: \mathbb{Z}_{m}^{2} \rightarrow \mathbb{C}$ of a function $\phi \in \mathbb{C}(\bar{S})$ by

$$
\phi_{h}(j)=\phi(j h), \quad \text { for } j \in \mathbb{Z}_{m}^{2} .
$$

Grid approximation of Green's function:

$$
g_{h}(j)= \begin{cases}g(j h), & j \in \mathbb{Z}_{m}^{2}, j \neq(0,0), \\ 0, & j=(0,0) .\end{cases}
$$

Discrete approximation

The discrete convolution operator A_{h}

$$
\left(A_{h} \phi_{h}\right)(j)=h^{2} \sum_{l \in \mathbb{Z}_{m}^{2}} g_{h}(j-l) \phi_{h}(I), \quad \text { for } j \in \mathbb{Z}_{m}^{2}
$$

Important fact:

$$
A_{h} \phi_{h}=h^{2} \operatorname{IFFT}\left(\operatorname{FFT}\left(g_{h}\right) \cdot \operatorname{FFT}\left(\phi_{h}\right)\right)
$$

i.e. the implementation is fast.

We approximate the integral equation by the discrete eqation

$$
\begin{equation*}
\left[I+A_{h}\left(T_{h} \cdot^{-}\right)\right] w_{h}=1 \tag{3}
\end{equation*}
$$

It has a solution for sufficiently large m; solved by GMRES.

Properties

- Linear convergence of algorithm $\mathcal{O}(h)$
- Complexity of algorithm is $\mathcal{O}\left(M^{2} \log (M)\right)$ for each x.
- Multigrid extension of algorithm is possible.
- Speed up possible [Huhtanen and Perämäki, 2010]

Connection to Calderón reconstruction

Near-field scattering transform:

$$
\begin{aligned}
\mathbf{t}^{\exp }(\xi, \zeta) & =\left\langle\left(\Lambda_{\sigma}-\Lambda_{1}\right) e^{i x \cdot \zeta}, e^{-i x \cdot(\zeta+\xi)}\right\rangle \\
& =\int_{\Omega} e^{-i x \cdot(\xi+\zeta)} q(x) v^{\exp }(x, \zeta) d x
\end{aligned}
$$

with $(-\Delta+q) v^{\text {exp }}=0$ in Ω and $\left.v^{\text {exp }}\right|_{\partial \Omega}=e^{i x \cdot \zeta}$.

Connection to Calderón reconstruction

Near-field scattering transform:

$$
\begin{aligned}
\mathbf{t}^{\exp }(\xi, \zeta) & =\left\langle\left(\Lambda_{\sigma}-\Lambda_{1}\right) e^{i x \cdot \zeta}, e^{-i x \cdot(\zeta+\xi)}\right\rangle \\
& =\int_{\Omega} e^{-i x \cdot(\xi+\zeta)} q(x) v^{\exp }(x, \zeta) d x
\end{aligned}
$$

with $(-\Delta+q) v^{\text {exp }}=0$ in Ω and $\left.v^{\text {exp }}\right|_{\partial \Omega}=e^{i x \cdot \zeta}$.
Scattering transform:

$$
\begin{aligned}
\mathbf{t}(\xi, \zeta) & =\left\langle\left(\Lambda_{\sigma}-\Lambda_{1}\right) \psi, e^{-i x \cdot(\zeta+\xi)}\right\rangle \\
& =\int_{\Omega} e^{-i x \cdot(\xi+\zeta)} q(x) \psi(x, \zeta) d x
\end{aligned}
$$

where $(-\Delta+q) \psi=0$ in \mathbb{R}^{n} and $\psi \sim e^{i x \cdot \zeta}$ for x near ∞.

Regularization of the algorithm

Noise model: $\tilde{\Lambda}_{\sigma}=\Lambda_{\sigma}+\mathcal{E}$

Problem: we don't know if $\tilde{\Lambda}_{\sigma} \in$ range (Λ).

This assumption is often made in stability estimates for the inverse problem resulting in results

$$
\begin{aligned}
\left\|\sigma_{1}-\sigma_{0}\right\|_{x} & \leq w\left(\left\|\Lambda_{\sigma_{1}}-\Lambda_{\sigma_{0}}\right\|_{Y}\right) \\
w(t) & =C|\ln (t)|^{-2 /(n+1)}
\end{aligned}
$$

Related to the notoriously difficult problem of the charaterization of range (\wedge).

Non-linear regularization

Definition

A family of continuous mappings $\Gamma_{\alpha}: Y \rightarrow L^{\infty}(\Omega)$ parameterized by $0<\alpha<\infty$ is a regularization strategy for F if

$$
\lim _{\alpha \rightarrow 0}\left\|\Gamma_{\alpha} \Lambda_{\sigma}-\sigma\right\|_{L \infty(\Omega)}=0
$$

for each fixed σ. Further, a regularization strategy with a choice $\alpha=\alpha(\varepsilon)$ of regularization parameter as function of noise level is called admissible if

$$
\alpha(\varepsilon) \rightarrow 0 \text { as } \varepsilon \rightarrow 0,
$$

and for any fixed σ the following holds:

$$
\sup _{\Lambda_{\sigma}^{\varepsilon}}\left\{\left\|\Gamma_{\alpha(\varepsilon)} \Lambda_{\sigma}^{\varepsilon}-\sigma\right\|_{L \infty(\Omega)}:\left\|\Lambda_{\sigma}^{\varepsilon}-\Lambda_{\sigma}\right\|_{Y} \leq \varepsilon\right\} \rightarrow 0 \text { as } \varepsilon \rightarrow 0 \text {. }
$$

Concrete strategy

Let $\alpha(\epsilon)=1 / R(\epsilon)$. Define $\Gamma_{\alpha(\varepsilon)} \Lambda_{\sigma}$ by the steps

1. Solve

$$
\tilde{\varphi}(z, k)=e^{i z k}-S_{k}\left(\tilde{\Lambda}_{\sigma}-\Lambda_{1}\right) \tilde{\varphi}, \quad|k|<R(\epsilon),
$$

and

$$
\tilde{\mathbf{t}}(k)=\int_{\partial \Omega} e^{i \overline{z k}}\left(\tilde{\Lambda}_{\sigma}-\Lambda_{1}\right) \tilde{\varphi}(\cdot, k) d \sigma(z) . \quad|k|<R(\epsilon)
$$

2. Solve

$$
\bar{\partial}_{k} \tilde{\mu}(x, k)=\frac{1}{4 \pi \bar{k}} \tilde{\mathbf{t}}(k) e_{-x}(k) \overline{\tilde{\mu}(x, k)}, \quad k \in \mathbb{C},
$$

and compute $\Gamma_{\alpha(\varepsilon)} \Lambda_{\sigma}=\tilde{\sigma}(x)=(\tilde{\mu}(x, 0))^{2}$.

Regularization theorem

Theorem

Suppose $\Lambda_{\sigma}^{\varepsilon}=\Lambda_{\sigma}+\mathcal{E}$ with $\|\mathcal{E}\|<\varepsilon$. For $R(\epsilon)=-\frac{1}{10} \log (\varepsilon), \Gamma_{\alpha(\varepsilon)} \Lambda_{\sigma}$ is an admissible regularization strategy and

$$
\left\|\Gamma_{\alpha(\varepsilon)} \Lambda_{\sigma}^{\varepsilon}-\sigma\right\|_{L^{\infty}(\Omega)} \leq C(-\log \varepsilon)^{-1 / 14}
$$

Regularization theorem

Theorem

Suppose $\Lambda_{\sigma}^{\varepsilon}=\Lambda_{\sigma}+\mathcal{E}$ with $\|\mathcal{E}\|<\varepsilon$. For $R(\epsilon)=-\frac{1}{10} \log (\varepsilon), \Gamma_{\alpha(\varepsilon)} \Lambda_{\sigma}$ is an admissible regularization strategy and

$$
\left\|\Gamma_{\alpha(\varepsilon)} \Lambda_{\sigma}^{\varepsilon}-\sigma\right\|_{L^{\infty}(\Omega)} \leq C(-\log \varepsilon)^{-1 / 14}
$$

Note, we do not assume $\Lambda_{\sigma}^{\varepsilon}$ is in the range of Λ.

Numerical results

Reconstructions with noiselevel $10^{-2}, 10^{-4}$ and 10^{-6}. Error in approximation is $52 \%, 14 \%$ and 12% respectively.

Comparison to Calderón method

Reconstructions with noiselevel 10^{-6}.
Left: Dbar method; error 12\%
Right: Calderon method (linearized); error 23\%

Convergence

Figure: Truncation against error

Reconstruction of non-smooth conductivities

Conclusion 2D

- Presentation of direct non-linear reconstruction algorithm in 2D.
- Implementation of non-linear method for computing conductivity.
- Rigorous regularization method in 2D.
- Method works reasonable well - is it worth the effort?
- Better understanding of truncation of $\mathbf{t}(k)$ as prior.
- What about 3D?

