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Outline

1. The Calderdn problem and linearization
2. The CGO-method for reconstruction in 2D
3. The CGO-method for reconstruction in 3D
4. The Calderdn problem with partial data
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Mathematical model for EIT
Smooth bounded domain Q ¢ R?, conductivity coefficient

0<c<o<C<oo; o = 1 near 99.
Voltage potential u in Q2 generated by boundary voltage potential f

o0

V.oVu=0inQ,
Ulpq = f.

Current field: J = oVu.
Normal component of current field at 0Q:

g=v- J= U@VU’aQ.
Dirichlet to Neumann (voltage to current) map
No: Fr—g.
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2. The CGO-method for reconstruction in 2D
(aka Dbar method)
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The Schrodinger equation
Equivalent problem for Schrédinger equation: v = o~'/2u
(—A+q)v:0inQ V|8Q:f,

with
q=0Ac"2/6"? & (A +q)0'/2 =0.
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The Schrodinger equation
Equivalent problem for Schrédinger equation: v = o~'/2u
(-A+q)v=0inQ Vg = f,
with
qg=2Ac"2/6"2 & (-A+q)0'/?=0.
Dirichlet to Neumann map:

ov o
/\qf = $|3Q = %au‘ag = /\Uf
Identity
(e = Ao ) = [ (@1~ ao)vavac,
Q
with

(—A—l—q,)V,:0|nQ Vj|aQ = I;
Forop=1, g =0:

(Ao = Ay, o) =/ qviVodx.
0
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Complex Geometrical Optics solutions

((As = M)y, fo) = /QCIV1V00'X'

Choose
vi(x,C) ~ X, (-¢=0,
o(x) = &X' (e4+¢)-(E+¢) =0.
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Complex Geometrical Optics solutions

((As = M)y, fo) = / qvyVpax.
Q
Choose
vi(x,Q) ~ X<, (-¢=0,
(x) =X (e+¢)-(6+()=0.

Complex Geometrical Optics (CGO)solutions (x,¢), (€ C", (- ¢(=0:
(—A+q)p(x,{) =0inR",
Y(x,¢) ~ e*¢ for large |x| or |¢].
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Complex Geometrical Optics solutions

((As = M)y, fo) = / qvyVpax.
Q
Choose
vi(x,Q) ~ X<, (-¢=0,
(x) =X (e+¢)-(6+()=0.

Complex Geometrical Optics (CGO)solutions (x,¢), (€ C", (- ¢(=0:
(—A+q)¥(x,¢) =0inR",
Y(x,¢) ~ e*¢ for large |x| or |¢].
Write 1(x, ¢) = e*<(1 + w(x, ()); then
(—A —2i¢-V 4 q)w = —q.

Numerical methods for EIT 6



Faddeev’s Green’s function
Faddeev’s Green’s functions
1 eix~k
90V = 2m7 Jos PP+ 2 ¢
Ge(x) = €%¢ge(x),  AG: =96, G;~e*<.

do, x € RY\ {0},
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Faddeev’s Green’s function
Faddeev’s Green’s functions
1 eix~k
X) =
900 = ()3 Jos IPE+2p ¢
Ge(x) = €%¢ge(x),  AG: =96, G;~e*<.
Then v, w must satisfy the Lippmann-Schwinger-Faddeev equation

b(x,.¢) = &< ¢ /Q Ge(x — Y)a(y)é(y. C)ox.

dp, x € RY\ {0},

w(X,Q) = —gc *q+ /Q 9:(x — V)W) (y.0).

1. In 2D this equation is uniquely solvable for all ¢.
2. In 3D this equation is uniquely solvable for |(| large (or small).
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Faddeev’s Green’s function
Faddeev’s Green’s functions
1 eix~k
X) =
900 = ()3 Jos IPE+2p ¢
Ge(x) = €%¢ge(x),  AG: =96, G;~e*<.
Then v, w must satisfy the Lippmann-Schwinger-Faddeev equation

b(x,.¢) = &< ¢ /Q Ge(x — Y)a(y)é(y. C)ox.

dp, x € RY\ {0},

w(X,Q) = —gc *q+ /Q 9:(x — V)W) (y.0).

1. In 2D this equation is uniquely solvable for all ¢.
2. In 3D this equation is uniquely solvable for |(| large (or small).
And

C
wl| 2 < —.
Wl 2(e) ]
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¥|sq at the boundary

Then ¢ |gq satisfies for fixed ( € C" the boundary integral equation

b(x.0) + /8 Gl Y)(h, = M)l Ods = &7, x < 09,

Written in terms of layer potentials
U+ Se(Ay — A)y = €%¢, x €9Q.

This is a solvable Fredholm equation of the second kind.
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¥|sq at the boundary

Then ¢ |gq satisfies for fixed ( € C" the boundary integral equation

b(x.0) + /8 Gl Y)(h, = M)l Ods = &7, x < 09,

Written in terms of layer potentials
U+ Se(Ay — A)y = €%¢, x €9Q.

This is a solvable Fredholm equation of the second kind.
Conclusion: from data we can find ¢|gq.

Solving the equation is severely ill-posed!
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The scattering transform

Introduce intermediate object, non-physical scattering/Fourier transform

t(E, Q) = (A — A1), C), €5 X0
- / e (& g(x)y(x, ()akx.
Q
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The scattering transform

Introduce intermediate object, non-physical scattering/Fourier transform

t(E, Q) = (A — A1), C), €5 X0
- / e (& g(x)y(x, ()akx.
Q

t satisfies the estimate

1G(€) — (&, Q) = 0(1/[<))-

Reconstruction algorithm

Ay = (&, ¢) = ().

Second step depends on 2D or 3D.
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Reconstruction method in 2D

Parameterize ¢ = (k, ik), k € C and put x = x1 + Xo.
The Dbar reconstruction algorithm

1. Solve the boundary integral equation (BIE)
Y+ Sk(No — M)y = €™ x€0Q,

and compute

t(k) = /69 " (N, — M)( -, k)do.
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Reconstruction method in 2D

Parameterize ¢ = (k, ik), k € C and put x = x1 + Xo.
The Dbar reconstruction algorithm

1. Solve the boundary integral equation (BIE)
Y+ Sk(No — M)y = €™ x€0Q,

and compute

t(k) = /{m " (N, — M)( -, k)do.

2. Solve the Dbar equation

_ 1 -
Bui(x,K) = (K)o x(K)u(x.K). ke C.

with e_x(k) := e~ {(k+kX). then o (x) = u(x, 0)2.
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Remarks

e Solving boundary integral equation is exponentially ill-posed.
¢ Solving dbar-equation is well-posed
e Reconstruction method is exact for 0 € W'+<P(Q), p > 2.
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Numerical details (unit disk)

1. Represent DN-map in Fourier basis {e"}
(As = A1)e™ =" che™.
n

Requires solution of BVP by FEM.
2. Expand all terms in BIE in Fourier basis.
3. After trunctaion we obtain matrix equation

Ac = b,

solve i.e. iteratively (GMRES).

Il posedness is handled in two ways:
e Upper limit on number of basis functions.
¢ Truncation for |k| < R.
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Numerical solution of the d-equation

For the scattering / inverse scattering problem solving a 9-equation is
important. We will now consider the numerical solution of such an
equation: We would like to solve the integral equation

i =1-1 [ D Eaidg,  k=k+igec, )
™ JRr2 -
or _
v(K) = 1— g (T(RVR). @

Assume that T is compactly supported in a bounded domain Q.
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Discretization

Let S = [—s, s]? be a square such that Q@ ¢ S. Choose
meZ,, M=2" h=2s/M. Define a grid G, C S by

Gm = {jn|j € 73},
75 ={j= () € Z?| —2™ 1 < j<2m T},

Grid approximation ¢, : Z2, — C of a function ¢ € C(S) by
on(j) = o(jh), forj € Z,
Grid approximation of Green’s function:

~_ JaUh), ez, j#(0,0),
gh(]) - {0’ j: (0’0)
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Discrete approximation

The discrete convolution operator Ay

(Andn)() = B2 > gnlj — Non(l), for j € 75,

lez2,
Important fact:
Anén = W2 IFFT(FFT(gp) - FFT(¢n)),

i.e. the implementation is fast.
We approximate the integral equation by the discrete eqgation

[+ An(Th-")wp = 1.

It has a solution for sufficiently large m; solved by GMRES.
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Properties

Linear convergence of algorithm O(h)

Complexity of algorithm is O(M? log(M)) for each x.
Multigrid extension of algorithm is possible.

Speed up possible [Huhtanen and Peramaki, 2010]
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Connection to Calderdn reconstruction

Near-field scattering transform:
(&, ¢) = <(/\a - /\1)eix'<, e‘iX'(C+§)>
= / —IX (5"‘( ( ) exp(X C)
Q

with (—A + g)ve® = 0in Q and ve®|sq = ex-<C.
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Connection to Calderdn reconstruction
Near-field scattering transform:
£2(6,0) = (Ao — Ay)eX<, e (6+9)
:/ e X(§+0) ( ) exp(x C) 7
Q

with (—A + @)ve® = 01in Q and ve*|sq = X<,
Scattering transform:

(,0) = (A — Ay, e ¥ (EH0))
= [ e 9g0x)u(x.c)ax.
Q

where (—A + @) = 0in R” and ¢ ~ €* for x near oco.
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Regularization of the algorithm
Noise model: A, = A, + &

Problem: we don’t know if A, € range (A).

This assumption is often made in stability estimates for the inverse
problem resulting in results

o1 —oollx < W(l[Asy — Agylly),
w(t) = C|In(t)|~2/(+1),

Related to the notoriously difficult problem of the charaterization of
range (A).
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Non-linear regularization

Definition
A family of continuous mappings Ty, : Y — L*>°(Q2) parameterized by
0 < a < o is aregularization strategy for F if

lim ||[F Ay — ooy =0
a—>0|| ol ()

for each fixed o. Further, a regularization strategy with a choice
a = «afe) of regularization parameter as function of noise level is called
admissible if

ale) - 0ase — 0,

and for any fixed o the following holds:

s/l\Jp{||I'a(€)/\§ — UHLoo(Q) : ||/\2 —/\UHy < 8} —0ase— 0.
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Concrete strategy

Let a(e) = 1/R(¢). Define ', (-)As by the steps

1. Solve
B(z,k) = €™ — Sk(Ay — M1)B,  |K| < R(e),
and
f(k) = /8 (R, ~ M)E(- Kdo(2). K] < A
2. Solve
Dufix, k) = (e (KK K), ke,

and compute I',)As = 5(X) = (fi(x, 0))?.
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Regularization theorem

Theorem
Suppose NS = A, + & with ||€|| < e. For R(e) = 10 log(e), M)A is an
admissible regularization strategy and

IT a5 — olis(0) < C(—loge)~ 1/14,
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Regularization theorem

Theorem
Suppose AZ = A, + € with ||€]| < e. For R(e) =
admissible regularization strategy and

10 log(e), T

IT a5 — olis(0) < C(—loge)~ 1/14,

Note, we do not assume AS is in the range of A.
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Numerical results
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Reconstructions with noiselevel 10-2,10~% and 10~®. Error in
approximation is 52%, 14% and 12% respectively.
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Comparison to Calderén method

A AN

Reconstructions with noiselevel 10~8.
Left: Dbar method; error 12%
Right: Calderon method (linearized); error 23%
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Convergence
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Figure: Truncation against error
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Reconstruction of non-smooth conductivities

11

0.95
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Conclusion 2D

Presentation of direct non-linear reconstruction algorithm in 2D.
Implementation of non-linear method for computing conductivity.
Rigorous regularization method in 2D.

Method works reasonable well - is it worth the effort?

Better understanding of truncation of t(k) as prior.

What about 3D?
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