

Numerical methods for EIT

Kim Knudsen Technical University of Denmark kiknu@dtu.dk

Advanced Instructional School of Theoretical and Numerical Aspects of Inverse Problems Bangalore June 16-27, 2014

About me...

Numerical methods for EIT

Outline

- 1. The Calderón problem and linearization
- 2. The CGO-method for reconstruction in 2D
- 3. The CGO-method for reconstruction in 3D
- 4. The Calderón problem with partial data

1. The Calderón problem and linearization

The use of electricity in treatment and monitoring of patients:

• Electrocardiography (EKG)

The use of electricity in treatment and monitoring of patients:

- Electrocardiography (EKG)
- Electro stimulation

The use of electricity in treatment and monitoring of patients:

- Electrocardiography (EKG)
- Electro stimulation
- Defillibrator

The use of electricity in treatment and monitoring of patients:

- Electrocardiography (EKG)
- Electro stimulation
- Defillibrator
- Electrical Impedance Tomography

Should EIT work for medical imaging?

• Fricke and Morse reported in the article "The electric capacity of tumours of the breast" (1926) that the electrical properties of breast tumours differ from healthy tissue

Should EIT work for medical imaging?

- Fricke and Morse reported in the article "The electric capacity of tumours of the breast" (1926) that the electrical properties of breast tumours differ from healthy tissue
- Barber-Brown (1989):

Tissue	Conductivity (mS/cm)
Blood	6.7
Liver	2.8
Skeletal muscle	8.0 (long.), 0.6 (trans.)
Cardiac muscle	6.3(long.), 2.3 (trans.)
Lung (expiration-inspiration)	1.0 - 0.4
Fat	0.36
Bone	0.06

Measurement setup EIT

Mathematical model for EIT

Smooth bounded domain $\Omega \subset \mathbb{R}^d$, d = 2, 3, conductivity coefficient

$$0 < c \le \sigma \le C < \infty; \qquad \sigma \equiv 1 \text{ near } \partial \Omega.$$

Voltage potential u in Ω generated by boundary voltage potential f

$$abla \cdot \sigma \nabla u = 0 \text{ in } \Omega,$$

 $u|_{\partial \Omega} = f.$

Current field: $J = \sigma \nabla u$. Normal component of current field at $\partial \Omega$:

$$\boldsymbol{g} = \boldsymbol{\nu} \cdot \boldsymbol{J} = \sigma \partial_{\boldsymbol{\nu}} \boldsymbol{u}|_{\partial \Omega}.$$

Dirichlet to Neumann (voltage to current) map

$$\Lambda_{\sigma} \colon f \mapsto g.$$

Dirichlet to Neumann map

Dirichlet to Neumann (voltage to current) map

$$\Lambda_{\sigma} \colon H^{1/2}(\partial \Omega) \to H^{-1/2}(\partial \Omega)$$
$$f \mapsto g.$$

Weakly defined for $h \in H^{1/2}(\partial \Omega)$ by

$$\langle \Lambda_{\sigma} f, h \rangle = \int_{\partial \Omega} (\Lambda_{\sigma} f) \overline{h} \, ds(x) = \int_{\Omega} \sigma \nabla u \cdot \overline{\nabla v} dx, \quad v \in H^{1}(\Omega): \ v|_{\partial \Omega} = h.$$

Dirichlet to Neumann map

Dirichlet to Neumann (voltage to current) map

$$\Lambda_{\sigma} \colon H^{1/2}(\partial \Omega) \to H^{-1/2}(\partial \Omega)$$
$$f \mapsto g.$$

Weakly defined for $h \in H^{1/2}(\partial \Omega)$ by

$$\langle \Lambda_{\sigma} f, h \rangle = \int_{\partial \Omega} (\Lambda_{\sigma} f) \overline{h} \, ds(x) = \int_{\Omega} \sigma \nabla u \cdot \overline{\nabla v} dx, \quad v \in H^{1}(\Omega): \ v|_{\partial \Omega} = h.$$

Note:

- Λ_{σ} bounded operator $H^{1/2}(\partial\Omega) \rightarrow H^{-1/2}(\partial\Omega)$
- Λ_{σ} is unbounded, selfadjoint in $L^{2}(\partial\Omega)$
- $\Lambda_{\sigma} \Lambda_1$ is compact in $L^2(\partial \Omega)$

Forward problem:

 $\Lambda : \sigma \mapsto \Lambda_{\sigma}$

From interior conductivity to boundary fields.

Forward problem:

$$\Lambda \colon \sigma \mapsto \Lambda_{\sigma}$$

From interior conductivity to boundary fields.

Inverse problem (Calderón 1980):

• Uniqueness: is A injective?

A P Calderón

Forward problem:

$$\Lambda\colon \sigma\mapsto \Lambda_{\sigma}$$

From interior conductivity to boundary fields.

A P Calderón

Inverse problem (Calderón 1980):

• Uniqueness: is A injective?

Yes! Depends on *n* and regularity of σ , $\partial \Omega$.

Forward problem:

$$\Lambda\colon \sigma\mapsto \Lambda_{\sigma}$$

From interior conductivity to boundary fields.

A P Calderón

Inverse problem (Calderón 1980):

• Uniqueness: is A injective?

Yes! Depends on *n* and regularity of σ , $\partial \Omega$.

Stable reconstruction: can *σ* be computed from Λ_σ in a stable manner?

Forward problem:

$$\Lambda\colon \sigma\mapsto \Lambda_{\sigma}$$

From interior conductivity to boundary fields.

A P Calderón

Inverse problem (Calderón 1980):

• Uniqueness: is A injective?

Yes! Depends on *n* and regularity of σ , $\partial \Omega$.

• Stable reconstruction: can σ be computed from Λ_{σ} in a stable manner?

Maybe

Forward problem:

$$\Lambda\colon \sigma\mapsto \Lambda_{\sigma}$$

From interior conductivity to boundary fields.

A P Calderón

Inverse problem (Calderón 1980):

• Uniqueness: is A injective?

Yes! Depends on *n* and regularity of σ , $\partial \Omega$.

• Stable reconstruction: can *σ* be computed from Λ_{*σ*} in a stable manner?

Maybe

Calderón problem is ill-posed:

• Large change in conductivity yields small change in data

Small change in data yields large change in reconstruction

Example with $f(\theta) = \cos(\theta)$

Current flow $J = \sigma \nabla u$:

Example with $f(\theta) = \cos(\theta)$

Current flow $J = \sigma \nabla u$:

Boundary normal current $g = \sigma \partial_{\nu} u$:

Numerical methods for EIT

Example with $f(\theta) = \cos(4\theta)$

Current flow $J = \sigma \nabla u$:

Homogeneous conductivity

Perturbed conductivity

Example with $f(\theta) = \cos(4\theta)$

Current flow $J = \sigma \nabla u$:

Homogeneous conductivity

Perturbed conductivity

Boundary normal current $g = \sigma \partial_{\nu} u$:

Boundary currents

Short and incomplete history

1980 Calderón: Problem posed, uniqueness for linearized problem, and linear, approximate reconstruction algorithm

3D

- 1987 Sylvester and Uhlmann: Uniqueness for smooth conductivities. Implicit reconstruction algorithm
- 1987-88 Novikov, Nachman-Sylvester-Uhlmann, Nachman: Uniqueness for conductivities with 2 derivatives and explicit high frequency reconstruction algorithm. Multidimensional D-bar equation.
 - 1990 Alessandrini: Stability
 - 2003 Brown-Torres, Päivärinta-Panchenko-Uhlmann: Uniqueness for conductivities with 3/2 derivatives.
 - 2006 Cornean-Knudsen-Siltanen: Low frequency reconstruction algorithm
 - 2010 Bikowski-Knudsen-Mueller: Numerical implementation of simplified reconstruction algorithm
- 2011-14 Debary Hansen- Knudsen: Implementation of more accurate numerical reconstruction method
 - 2012 Haberman Tataru: Uniqueness for Lipschitz conductivities

2D

- 1996 Nachman: Uniqueness and reconstruction for $W^{2,p}(\Omega)$ conductivities.
- 1997 Liu: Stabilty for $W^{2,p}(\Omega)$ conductivities
- 1997 Brown-Torres: Uniqueness for $W^{1,p}(\Omega)$ conductivities
- 2001 Barceló-Barceló-Ruiz: Stability for $C^{1+\epsilon}$ conductivities
- 2001 Knudsen-Tamasan: Reconstruction for $C^{1+\epsilon}$ conductivities
- 2005 Astala-Päivärinta: Uniqueness and reconstruction for $L^{\infty}(\Omega)$
- 2009 Knudsen-Lassas-Mueller-Siltanen: Regularized 7-method
- 2010 Clop-Faraco-Ruiz: Stability for discontinuous conductivities

+ many more

• Linearization:

Replace non-linear operator $\Lambda : \sigma \mapsto \Lambda_{\sigma}$ by linear operator and solve linear inverse problem.

• Linearization:

Replace non-linear operator $\Lambda : \sigma \mapsto \Lambda_{\sigma}$ by linear operator and solve linear inverse problem.

• The CGO-based method (non-linear):

$$\Lambda_{\sigma} \longrightarrow \mathbf{t}(\xi,\zeta) \longrightarrow q(x) \longrightarrow \sigma(x)$$

• Linearization:

Replace non-linear operator $\Lambda : \sigma \mapsto \Lambda_{\sigma}$ by linear operator and solve linear inverse problem.

• The CGO-based method (non-linear):

$$\Lambda_{\sigma} \longrightarrow \mathbf{t}(\xi,\zeta) \longrightarrow q(\mathbf{x}) \longrightarrow \sigma(\mathbf{x})$$

 Optimization: Minimize over γ

$$\Phi(\gamma) = \|\Lambda_{\gamma} - \Lambda_{\sigma}\|_{Y} + \alpha \|\gamma\|_{X}$$

for suitable (semi-)norms X, Y.

• Linearization:

Replace non-linear operator $\Lambda : \sigma \mapsto \Lambda_{\sigma}$ by linear operator and solve linear inverse problem.

• The CGO-based method (non-linear):

$$\Lambda_{\sigma} \longrightarrow \mathbf{t}(\xi,\zeta) \longrightarrow q(\mathbf{x}) \longrightarrow \sigma(\mathbf{x})$$

 Optimization: Minimize over γ

$$\Phi(\gamma) = \|\Lambda_{\gamma} - \Lambda_{\sigma}\|_{Y} + \alpha \|\gamma\|_{X}$$

for suitable (semi-)norms X, Y.

• Bayesian inversion:

$$\pi(\boldsymbol{x}|\boldsymbol{y}) = \frac{\pi(\boldsymbol{y}|\boldsymbol{x})\pi_{\mathrm{pr}}(\boldsymbol{x})}{\pi(\boldsymbol{y})}$$

Numerical methods for $x_{for \in I}\sigma$ and $y = \Lambda_{\sigma}$.

Linearization

Green's formula yields

$$\langle (\Lambda_{\sigma_1} - \Lambda_{\sigma_0}) f_1, f_0 \rangle = \int_{\Omega} (\sigma_1 - \sigma_0) \nabla u_1 \cdot \overline{\nabla u_0} dx, \\ \nabla \cdot \sigma_j \nabla u_j = 0 \text{ in } \Omega, \quad u_j |_{\partial \Omega} = f_j, \ j = 0, 1.$$

Linearization

Green's formula yields

$$\langle (\Lambda_{\sigma_1} - \Lambda_{\sigma_0}) f_1, f_0 \rangle = \int_{\Omega} (\sigma_1 - \sigma_0) \nabla u_1 \cdot \overline{\nabla u_0} dx, \nabla \cdot \sigma_j \nabla u_j = 0 \text{ in } \Omega, \quad u_j |_{\partial \Omega} = f_j, \ j = 0, 1.$$

Linear approximation (the Fréchet derivative):

$$\Lambda_{\sigma_0+\delta\sigma}-\Lambda_{\sigma_0}\approx (d\Lambda[\sigma_0])(\delta\sigma).$$

Linearization

Green's formula yields

$$\langle (\Lambda_{\sigma_1} - \Lambda_{\sigma_0}) f_1, f_0 \rangle = \int_{\Omega} (\sigma_1 - \sigma_0) \nabla u_1 \cdot \overline{\nabla u_0} dx, \nabla \cdot \sigma_j \nabla u_j = 0 \text{ in } \Omega, \quad u_j|_{\partial \Omega} = f_j, \ j = 0, 1.$$

Linear approximation (the Fréchet derivative):

$$\Lambda_{\sigma_0+\delta\sigma}-\Lambda_{\sigma_0}\approx (d\Lambda[\sigma_0])(\delta\sigma).$$

For $\sigma_0 = 1$

$$\langle (\Lambda_{1+\delta\sigma} - \Lambda_1) f_1, f_0 \rangle \approx \langle (d\Lambda[1]\delta\sigma) f_1, f_0 \rangle = \int_{\Omega} \delta\sigma \nabla v_1 \cdot \overline{\nabla v_0} dx$$

with $\Delta v_j = 0$, $v_j|_{\partial\Omega} = f_j$.

Numerical methods for EIT

The linearized problem

Concerns the inversion of the mapping

 $\delta \sigma \mapsto (d\Lambda[1])(\delta \sigma).$

We want to compute $\delta\sigma$ by knowing:

$$\int_{\Omega} \delta \sigma \nabla \mathbf{v}_1 \cdot \overline{\nabla \mathbf{v}_0} d\mathbf{x}$$

for all harmonic functions v_0 , v_1 . Questions:

- Uniqueness?
- Stable reconstruction?

Problem: find σ from knowing

$$\mathcal{K}\sigma(x) = \int_{\Omega} \sigma(y) k(x,y) dy.$$

Problem: find σ from knowing

$$K\sigma(x) = \int_{\Omega} \sigma(y) k(x, y) dy.$$

1. Calderón problem: unknown diffuse kernel

$$k((i,j), \mathbf{y}) = \nabla u_i \cdot \overline{\nabla v_j}, \quad \nabla \cdot \sigma \nabla u = \mathbf{0}, \ \Delta \mathbf{v} = \mathbf{0}.$$

Problem: find σ from knowing

$$K\sigma(x) = \int_{\Omega} \sigma(y) k(x, y) dy.$$

1. Calderón problem: unknown diffuse kernel

$$k((i,j), y) = \nabla u_i \cdot \overline{\nabla v_j}, \quad \nabla \cdot \sigma \nabla u = 0, \ \Delta v = 0.$$

2. Linearized Calderón problem: known diffuse kernel

$$k((i,j),y) = \nabla v_i \cdot \overline{\nabla v_j}, \quad \Delta v = 0.$$

Problem: find σ from knowing

$$K\sigma(x) = \int_{\Omega} \sigma(y) k(x, y) dy.$$

1. Calderón problem: unknown diffuse kernel

$$k((i,j), y) = \nabla u_i \cdot \overline{\nabla v_j}, \quad \nabla \cdot \sigma \nabla u = 0, \ \Delta v = 0.$$

2. Linearized Calderón problem: known diffuse kernel

$$k((i,j),y) = \nabla v_i \cdot \overline{\nabla v_j}, \quad \Delta v = 0.$$

3. Computerized Tomography: known localized kernel $k(\theta, r, y) = \delta(y \cdot \theta - r).$

Exponentially growing harmonics

Fix real vector $\xi \in \mathbb{R}^n$ and complex vector $\zeta \in \mathbb{C}^n$ such that

$$\zeta \cdot \zeta = (\xi + \zeta) \cdot (\xi + \zeta) = \mathbf{0}.$$

Harmonic functions in \mathbb{R}^n .

$$v_1(x,\zeta) = e^{ix\cdot\zeta}, \qquad v_0(x,\zeta) = e^{ix\cdot(\xi+\overline{\zeta})}$$

Exponentially growing harmonics

Fix real vector $\xi \in \mathbb{R}^n$ and complex vector $\zeta \in \mathbb{C}^n$ such that

$$\zeta \cdot \zeta = (\xi + \zeta) \cdot (\xi + \zeta) = \mathbf{0}.$$

Harmonic functions in \mathbb{R}^n .

$$v_1(x,\zeta) = e^{ix\cdot\zeta}, \qquad v_0(x,\zeta) = e^{ix\cdot(\xi+\overline{\zeta})}$$

Then

$$\nabla v_1 \cdot \overline{\nabla v_0} = \zeta \cdot (\xi + \zeta) e^{-ix \cdot \xi} = -\frac{1}{2} |\xi|^2 e^{-ix \cdot \xi}$$

Exponentially growing harmonics

Fix real vector $\xi \in \mathbb{R}^n$ and complex vector $\zeta \in \mathbb{C}^n$ such that

$$\zeta \cdot \zeta = (\xi + \zeta) \cdot (\xi + \zeta) = \mathbf{0}.$$

Harmonic functions in \mathbb{R}^n .

$$v_1(x,\zeta) = e^{ix\cdot\zeta}, \qquad v_0(x,\zeta) = e^{ix\cdot(\xi+\overline{\zeta})}$$

Then

$$\nabla v_1 \cdot \overline{\nabla v_0} = \zeta \cdot (\xi + \zeta) e^{-ix \cdot \xi} = -\frac{1}{2} |\xi|^2 e^{-ix \cdot \xi}$$

and

$$\begin{split} \langle d\Lambda_1[\delta\sigma] e^{ix\cdot\zeta}, e^{ix\cdot(\xi+\overline{\zeta})} \rangle &= -\frac{1}{2} |\xi|^2 \int_{\Omega} \delta\sigma e^{-ix\cdot\xi} dx \\ &= -\frac{1}{2} (2\pi)^{n/2} |\xi|^2 \widehat{\delta\sigma}(\xi) \\ \Leftrightarrow \qquad \widehat{\delta\sigma}(\xi) = -\frac{2}{(2\pi)^{n/2} |\xi|^2} \langle d\Lambda_1[\delta\sigma] e^{ix\cdot\zeta}, e^{ix\cdot(\xi+\overline{\zeta})} \rangle. \end{split}$$

Numerical methods for EIT

Uniqueness and stable reconstruction

$$\widehat{\delta\sigma}(\xi) = -\frac{2}{(2\pi)^{n/2}|\xi|^2} \langle d\Lambda_1[\delta\sigma] e^{i\mathbf{x}\cdot\zeta}, e^{i\mathbf{x}\cdot(\xi+\overline{\zeta})} \rangle.$$

• Uniqueness: Injectivity of Fourier transform.

Uniqueness and stable reconstruction

$$\widehat{\delta\sigma}(\xi) = -\frac{2}{(2\pi)^{n/2}|\xi|^2} \langle d\Lambda_1[\delta\sigma] e^{ix\cdot\zeta}, e^{ix\cdot(\xi+\overline{\zeta})} \rangle.$$

- Uniqueness: Injectivity of Fourier transform.
- Reconstruction:

$$\delta\sigma(\mathbf{x}) = -\frac{2}{(2\pi)^n} \int_{\mathbb{R}^n} \frac{\langle d\Lambda_1[\delta\sigma] e^{i\mathbf{x}\cdot\zeta}, e^{i\mathbf{x}\cdot(\xi+\zeta)} \rangle}{|\xi|^2} e^{i\mathbf{x}\cdot\xi} d\xi.$$

Uniqueness and stable reconstruction

$$\widehat{\delta\sigma}(\xi) = -\frac{2}{(2\pi)^{n/2}|\xi|^2} \langle d\Lambda_1[\delta\sigma] e^{i x \cdot \zeta}, e^{i x \cdot (\xi + \overline{\zeta})} \rangle.$$

- Uniqueness: Injectivity of Fourier transform.
- Reconstruction:

$$\delta\sigma(\mathbf{x}) = -\frac{2}{(2\pi)^n} \int_{\mathbb{R}^n} \frac{\langle d\Lambda_1[\delta\sigma] e^{i\mathbf{x}\cdot\zeta}, e^{i\mathbf{x}\cdot(\xi+\zeta)} \rangle}{|\xi|^2} e^{i\mathbf{x}\cdot\xi} d\xi.$$

Stabilization: Noise amplified exponential harmonics. Remedy: Avoid high frequencies by low-pass filtering:

$$\delta\sigma_{R}(\mathbf{x}) = -\frac{2}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} \frac{\langle d\Lambda_{1}[\delta\sigma] \mathbf{e}^{i\mathbf{x}\cdot\zeta}, \mathbf{e}^{i\mathbf{x}\cdot(\xi+\overline{\zeta})} \rangle}{|\xi|^{2}} \mathbf{e}^{i\mathbf{x}\cdot\xi} \chi_{R}(\xi) \ d\xi.$$

Regularization scheme if *R* is chosen correctly.

Numerical methods for EIT

Calderón's reconstruction method

Treat non-linear data

$$\mathbf{t}^{\exp}(\xi,\zeta) := \langle (\Lambda_{\sigma} - \Lambda_{1}) \boldsymbol{e}^{i\boldsymbol{x}\cdot\zeta}, \boldsymbol{e}^{i\boldsymbol{x}\cdot(\xi+\overline{\zeta})} \rangle = \int_{\Omega} \delta\sigma \nabla \boldsymbol{u} \cdot \nabla \boldsymbol{e}^{-i\boldsymbol{x}\cdot(\xi+\zeta)} d\boldsymbol{x}$$

as linear data in previous formula

$$\sigma^{\operatorname{Cal}}(x) = 1 - \frac{2}{(2\pi)^n} \int_{\mathbb{R}^n} \frac{\mathbf{t}^{\exp}(\xi,\zeta)}{|\xi|^2} e^{ix\cdot\xi} \chi_{\mathsf{R}}(\xi) \ \mathsf{d}\xi.$$

Calderón's reconstruction method

Treat non-linear data

$$\mathbf{t}^{\exp}(\xi,\zeta) := \langle (\Lambda_{\sigma} - \Lambda_{1}) \boldsymbol{e}^{i\boldsymbol{x}\cdot\zeta}, \boldsymbol{e}^{i\boldsymbol{x}\cdot(\xi+\overline{\zeta})} \rangle = \int_{\Omega} \delta\sigma \nabla \boldsymbol{u} \cdot \nabla \boldsymbol{e}^{-i\boldsymbol{x}\cdot(\xi+\zeta)} d\boldsymbol{x}$$

as linear data in previous formula

$$\sigma^{\operatorname{Cal}}(x) = 1 - \frac{2}{(2\pi)^n} \int_{\mathbb{R}^n} \frac{\mathbf{t}^{\exp}(\xi,\zeta)}{|\xi|^2} e^{ix\cdot\xi} \chi_R(\xi) \ d\xi.$$

Estimate:

$$egin{aligned} \|\sigma^{ ext{Cal}}(x) - \eta_\gamma st \sigma\|_{L^\infty} &\leq \|m{R}(k)\hat\eta(k/\gamma)\|_{L^1(\mathbb{R}^2)} \ &\leq C\|\sigma-1\|^{1+lpha}_{L^\infty(\Omega)}(\log(\|\sigma-1\|_{L^\infty(\Omega)}))^2. \end{aligned}$$

Concentric reconstruction (linear)

Numerical methods for EIT

Figure: Increasing Fourier truncation for Calderón's method

Conclusion, linearized reconstruction

- Easy to implement and fast: based on FFT
- Recovers (with no regularization) the support of perturbation $\delta\sigma$ (cf [von Harrach Seo, 2010] and [Knudsen Lassas Mueller Siltanen, 2007])
- Recovers well low contrast perturbations
- Regularized algorithm recovers smooth approximatrion
- Can rigorous mathematics allow better reconstructions?