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Weyl Semimetals

WSMs: certainly one of the most stunning representatives
of topological material classes
Electronic band structure is predicted to host Weyl points
3-dimensional linear band crossings represent massless
Weyl fermions of defined chirality
Systems exhibiting Weyl points have either time-reversal or
inversion symmetry broken
Two Weyl points always form a pair of opposite chirality

[Annu. Rev. Condens. Matter Phys. 8, 289 (2017),
Rev. Mod. Phys. 90, 015001 (2018)]
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Symmetry Breaking Model

Time symmetry breaking minimal model: a single pair of
Weyl node, Weyl nodes are located at different momenta
Inversion symmetry breaking model: a minimum of four
Weyl points is required; leads to the energy separated
Weyl points
Small perturbations do not gap out individual Weyl points
Large perturbations can cause Weyl points of opposite
chirality to overlap and annihilate
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Berry curvature in WSM

In WSM, linearly dispersing Weyl nodes are monopoles of
Berry curvature- acts like a momentum-space magnetic
field
WPs act as a source/sink of Berry curvature
Berry curvature- responsible for the topological nature of
these materials
WSMs exhibit novel transport properties: emergent
monopoles are at the heart of this property
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Chiral Fermions

Weyl fermions: massless chiral fermions
Chirality: helicity or handedness of Weyl Fermions
Weyl fermions- not observed as a fundamental particle in
nature
Theoretical Prediction- Weyl fermions may be realized as
emergent quasiparticles in a low-energy condensed matter
system
[Herring, C. PRB 52 (1937), Murakami, S. New J Phys.
(2007) ]
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Experimental realization

WSM enables realization of Weyl fermions in electronic
systems
S.-Y. Xu et al. ”Discovery of a Weyl Fermion semimetal
and topological Fermi arcs” Science 349, 613 (2015)
E. Haubold et al. Phys. Rev. B 95, 241108 (R) (2017)
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Two types of WSM

Type-I WSMs: density of states of the Weyl fermions goes
to zero at the Weyl points
In some sense, we can think of these as the limiting case
of a direct gap semiconductor where the conduction and
valence bands meet at the Weyl nodes
Type-II WSMs: bands comprising the Weyl nodes have a
finite density of states at the Weyl energy
Difference:
Type-I WSMs host quasiparticles described by the Weyl
equation
Energy dispersion of quasiparticles in type-II WSMs
violates Lorentz invariance and the Weyl cones in the
momentum space are tilted
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Type II WSM

Tilting of the Weyl cone: Fermi surface surrounding the
Weyl node transforms into two Fermi surfaces of electron
and holes
Signatures of a type-II WSMs have been reported in some
materials
Opens the door for further experimental study of the type-II
WSMs
[Nature 527 (2015), PRL 115 (2015), Sci Adv 3 (2017),
PRB 96 (2017)]
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Figure: a. Type I, b. Type II

[Courtesey: Nature Physics, 12, 1105(2016), Nature, 527 495
(2015)]
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WSM Characteristics

WSMs: 3 defining and inter-related characteristics
linearly dispersing Weyl nodes (or Weyl points)
Monopoles of Berry curvature originates at the location of
the Weyl points in momentum space
Unique boundary modes known as Fermi arcs connect
projections of these Weyl nodes in the surface Brillouin
zone
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Weyl Fermions

Fermions in 3+1 spacetime dimensions obey the Dirac
equation

(γµ∂µ −m)Ψ = 0

In massless limit, Dirac equation decouples to two Weyl
equations

σµ∂µΨL = 0

σµ∂µΨR = 0

ΨL and ΨR - two component Weyl spinors
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Weyl Hamiltonian

Weyl Hamiltonian for massless electron with chirality s = ±

Hs = s~vF k · σ

vF :speed of the fermion, fermion momentum p = ~k
In the band structures of metals and semimetals, kinetic
energy of electrons much less than their rest mass:
Schrodinger equation is adequate
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Lattice Models and Linearized Band Structure

Two-band lattice model for a WSM:

H(k) = a(k)σx + b(k)σy + c(k)σz

a(k) = t [cos(kx ) + cos(ky ) + cos(kz)− cos(k0)− 2],

b(k) = t sin(ky ), c(k) = t sin(kz)

At kW = (±k0,0,0), all three functions vanish
Hamiltonian is expanded around k-space singularities in
the low-energy theory

Heff (k) = vF ~σ · ~k
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Tilt in Type II WSM

In HEP, Weyl fermions are assumed to be Lorentz invariant
In CMP, a Lorentz non-symmetric term may be added to
the conical dispersion relation of WSM
Tilting of Weyl cone in such a way that for large enough
tilts, a Lifshitz phase transition occurs
Tilted Hamiltonian:

H(k) = Cs~kz + s~vF~σ · ~k

Cs-tilt parameter
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Minimal model for tilted WSM

Linearized Hamiltonian for a time-reversal
symmetry-breaking tilted Weyl semimetal

Hs(k) = ~Cs(kz − sQ) + s~vσ.(k− sQez)

Two Weyl nodes (s = ±) of opposite chirality separated in
momentum space
2Q: Distance between the Weyl points along ez
v -Fermi velocity when the tilt parameter Cs = 0
Type I WSM: |Cs| < v , for Type II |Cs| > v
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Irradiation of WSM

Periodic circularly polarized laser beam

E(t) = E0(cosωt ,− sinωt)

E0 and ω - amplitude and frequency of the optical field
Induce a driving term in the Hamiltonian

Vs(t) = s~vA0(σx sinωt + σy cosωt)

U(1) gauge field is introduced via Pierel’s substitution
A0 = E0/ω
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Time dependent Hamiltonian

Time dependent Hamiltonian

Hs(k , t) = Hs(k) + Vs(t)

Hs(k) = ~Cs(kz − sQ) + s~vσ.(k− sQez)

Vs(t) = s~vA0(σx sinωt + σy cosωt)

Hs represent the unperturbed static Hamiltonian
Vs represent the perturbative potential originated due to
driving
High Frequency expansion : Floquet effective Hamiltonian
For high ω describe the driven system over a period of T
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Floquet Theory

Periodically driven quantum systems: attracts intensive
interests from a viewpoint of dynamically controlling
quantum phases of matter by external drives
Effect of a periodic drive: usually interpreted in terms of a
change of the Hamiltonian to an effective static one derived
from the Floquet theory and high frequency expansion
Imperative to understand the detailed behaviour of the
effective Hamiltonian for varied frequency and amplitude of
the periodic drive
Mechanism of light matter interaction in quantum materials
challenges the knowledge of material physics in a new
direction
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Floquet Hamiltonian

Floquet theory- great advantage as the effective static
Hamiltonian is much easier to treat than the original time
dependent one
A price to pay: time dependent Schroedinger equation in
Hilbert space H
Floquet Hamiltonian in an extended Hilbert space H ⊗ T , T
represent multi-photon dressed states
To interpret analysis in terms of the static Hamiltonain in H,
a mapping is required
Possible in high frequency regime, ~ω >> ∆E ,
∆E : maximal energy associated with real electronic inter
and intra band transitions
System can be effectively regarded as a time-averaged
one
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High frequency limit

A conventional approach is based on Floquet-Magnus
expansion
Effective Hamiltonian explicitly depends on the phase of
the drive
van Vleck degenerate perturbation theory is free from any
phase dependence of the drive
not easy to derive higher order terms in 1/ω
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High frequency limit of irradiation
Zero-photon dressed states are decoupled from other
dressed states
van-Vleck expansion: include virtual processes for
electrons absorbing and emitting one photon with a second
order perturbation theory

Explicit form of Vs =
[V−1,V+1]

~ω

Heff ∼ H0 +
[H−1,H1]

ω

Floquet expansion is done upto second order in 1
ω

All higher order contributions to the first order vanish
Use of a high frequency laser field leads to a plethora of
interesting effects

Banasri Basu Anomalous thermal transport in irradiated tilted Weyl Semimetals



Effective light induced Hamiltonian

High Frequency limit: Effective time independent
Hamiltonian

HF
s = ~Cs[kz −s(Q + ∆)] + s~vσ.[k −s(Q + ∆)ez ] + s~Cs∆

Floquet parameter ∆ =
~vA2

0
2ω - contribution of the radiation

field.
Hamiltonian with radiation and without radiation - similar
Weyl nodes further displaced by a distance 2∆ in
momentum space
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Exclusion of the |C| ∼ v regime

Linearized model of irradiated WSM: does not work well
around the Lifshitz transition between the type I and type II
phases
Go on increasing the tilt in the type I phase, Fermi surface
of each cone will grow
Tilt is further increased: depending on the position of the
Fermi level, above a certain value of tilt, electron and hole
pocket will again co-exist
Qualitatively correct description of the system is obtained
by adding a physical momentum cut off
Study is restricted to deep in the type I and type II phase
excluding |C| ∼ v region
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[ PRB 96, 115202 (2017), PRB 98,2015109 (2018)]
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Floquet states

Hamiltoninan is influenced by a periodic potential
Floquet states: time analogue of Bloch states |Φ(t)〉
Satisfy

|Φ(t + T )〉 = |Φ(t)〉

Schroendinger equation

H(t)|Φ(t)〉 = εα|Φ(t)〉

εα : quasienergies
Floquet states- orthonormal under a time averaged inner
product

〈Φα(t)|Φβ(t)〉 :=
1
T

∫ T

0
dt 〈Φα(t)〉Φβ(t) = δαβ.
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Floquet-Kubo Formula

σF
ab = i

∫
dk

(2π)d

∑
α 6=β

fβ(k)− fα(k)

εβ(k)− εα(k)

×
〈〈Φα(k)|Jb|Φβ(k)〉〉〈〈Φβ(k)|Ja|Φα(k)〉〉

εβ(k)− εα(k) + iη

|Φα(k)〉 :states of the effective Floquet Hamiltonian
Ja(b) : current operator
Floquet-Kubo formula, conductivity tensor is time averaged
Energies have been replaced with the Floquet
quasi-energies εα

[ PRB 79, 169901 (2009), PRB 98,2015109 (2018) ]
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Current correlation functions: time averaged
Time averaged current correlation function :

〈〈Φβ(k)|J|Φα(k)〉〉 =
1
T

∫ T

0
dt
∑

m

∑
n

e−iΩ(n−m)t〈um
α |J|un

β〉

=
∑

m

∑
n

δnm〈um
α |J|un

β〉

=
∑

n

〈un
α|J|un

β〉

|uα〉: Fourier counterpart- eigenstates of the effective
Floquet Hamiltonian
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High Frequency expansion

HFE: |un
α〉 ∼ O(ω−n)

In leading order calculations, only the zeroth level Floquet
states |u0

α〉 contribute
Current correlator in terms of |u0

α〉

〈〈Φβ(k)| J |Φα(k)〉 =
∑

n

〈un
α| J |un

β〉 = 〈u0
α| J |u0

β〉
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Conductivity Tensor

Computed using the eigenstates of the effective
Hamiltonian to leading order in perturbation theory
Conductivity tensor

σF
ab = i

∫
dk

(2π)d

∑
α 6=β

fβ(k)− fα(k)

εβ(k)− εα(k)

×
〈eα(k)|Jb|eβ(k)〉 〈eβ(k)|Ja|eα(k)〉

εβ(k)− εα(k) + iη

Resembles the Kubo form for the undriven case
In terms of effective Floquet states |eα(β)〉 =

∑
n |un

α(β)〉
and quasi-energies εα(β)
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Matsubara Green’s function method

Use Matsubara Green’s function method (with ~ = 1) for
the Floquet-Kubo formula
Current-current correlation function

Πij(Ω,q) = T
∑
ωn

∑
s=±

∫
d3k

(2π)3 J(s)
i

× Gs(iωn,k)J(s)
j Gs(iωn − iΩm,k− q)

∣∣∣∣
iΩm→Ω+iδ

Gs(iωn,k) - single particle Green’s function of the electron
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Current operator

Current operator: J(s)
i = e (Csδiz + svσi)

i , j = {x , y , z}, T : temperature (setting the Boltzmann
constant as unity)
ωn(Ωm): Fermionic (Bosonic) Matsubara frequencies
One particle Green’s function
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Πxy

Hall conductivity related to the current-current correlation
function

σxy = − lim
Ω→0

Πxy (Ω,0)

iΩ

Summing over the Matsubara frequencies and taking trace
over Pauli matrices,

Πxy (Ω,0) = Π
(+)
xy (Ω,0) + Π

(−)
xy (Ω,0)

Contributions from the two Weyl cones are separated
Further,

Π
(s)
xy (Ω,0) = Π

(s)
0 (Ω,0) + Π

(s)
FS(Ω,0)
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Vacuum and FS contribution

σ
(s)
xy = σ

(s)
0 + σ

(s)
FS ,

σ
(s)
0 = −e2

∫ Λ0−s(Q+∆)

−Λ0−s(Q+∆)

dkz

2π

∫ ∞
0

k⊥dk⊥
2π

skz

2k3 , (1)

σ
(s)
FS = e2

∫ Λ−s(Q+∆)

−Λ−s(Q+∆)

dkz

2π

∫ ∞
0

k⊥dk⊥
2π

× skz

2k3

[
nF (Cskz + vk − µ+ sCs∆)

−nF (Cskz − vk − µ+ sCs∆) + 1
]

Banasri Basu Anomalous thermal transport in irradiated tilted Weyl Semimetals



Salient Features

skz/2k3 - z-component of the Berry curvature of the Weyl
cone with chirality s
Berry curvature features in both the vacuum and FS
contribution
Interestingly, both the tilt Cs and the Floquet parameter ∆
affect the Fermi-Dirac distribution function
Cut-off Λ0, introduced in the kz integral, does not affect the
vacuum contribution to the Hall conductivity
Cutoff in σs

FS, denoted as Λ, is crucial for finite Fermi
surface effects in both the type-I and type-II regime

Banasri Basu Anomalous thermal transport in irradiated tilted Weyl Semimetals



For T → 0, and performing the k⊥ integration,

σ
(s)
0 = − se2

8π2

∫ Λ0−s(Q+∆)

−Λ0−s(Q+∆)
dkz sign(kz),

σ
(s)
FS = − se2

8π2

∫ Λ−s(Q+∆)

−Λ−s(Q+∆)
dkz

[
sign(kz)− vkz

|Cskz − µ+ sCs|

]
× [(Θ(v2k2

z − Cskz + sCs∆− µ)2)− 1]

Θ(x) - Heaviside function
Vacuum contribution

σ0 =
e2

2π2 (Q + ∆)

Integral for the FS contribution is evaluated for both types
of WSMs
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Berry Curvature associated with irradiated WSM

Berry potential

Aα(k) = −i << φα(k)|∇k|φα(k) >>

Berry curvature in terms of the Floquet states

∇k ×Aα(k)

As the leading order contribution come from the zeroth
level Floquet states

Aα(k) = −i〈u0
α|∇k|u0

α〉
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Vacuum Hall conductivity for light induced WSM

Hall conductivity

σxy = e2
∫

d3k
(2π)3

∑
α

fα(k)[∇k ×A]z

f (k) = 1 for µ = 0
For tilt symmetric case,

σxy =
e2(Q + ∆)

2π2

Without light

σxy =
e2Q
2π2

Vacuum conductivity depends linearly on the distance
between the Weyl nodes in the momentum space
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Thermoelectric properties in irradiated WSM

Tilted time reversal breaking model possess a non-zero
anomalous Hall conductivity in x − y plane : σxy

Mott rule and Wiedemann-Franz law hold good
Assume that the Luttinger phenomenological transport
equations valid for effective time independent Floquet
Hamiltonian
Use thermal transport equations

[ JETP Lett. 103, 717 (2016), Phys. Rev. Lett 119,036601
(2017), Phys. Rev. B 96, 121116 (2017), J Phys. C 10, 2153
(1977), Phys. Rev. B 96, 115202 (2017) ]
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Transport Current

Anomalous Nernst Current

Ja = −αxyεab∂bT

Anomalous thermal Hall current

JQ
a = −Kxyεab∂bT

[ PRB 96, 115202 (2017), PRB 98, 205109 (2018) ]
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Thermal Responses

Anomalous Nernst conductivity :

αxy = eLT
dσxy

dµ

Anomalous thermal Hall conductivity :

Kxy = LTσxy

L = π2kb2/3e- Lorentz number, e is the electronic charge
and kB is the Boltzmann constant
Computation of σxy as a function of µ
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WSM-I

Anomalous Nernst and thermal Hall conductivities in
T → 0 limit for a type-I WSM,

αxy =
−ek2

BTC
18~2v2

Kxy ≈
k2

BT
6~

[(
Q + ∆

)
− C(µ− C∆)

3~v2

]
sCs = C for s = ±, C+ = −C− = C
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Thermal Hall conductivity- Type 1

Kxy varies smoothly around the point µ = C∆

Rewrite the Hall conductivity

Kxy =
k2

BT
6~

[Q − µ

3~v2 C] +
k2

BT
6~

[1 +
C2

3~v2 ]∆ = K 0
xy + K ∆

xy

∆ = 0 gives us back the results without radiation
K 0

xy -Hall conductivity in the absence of irradiation

K ∆
xy - positive contribution of the laser field
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Dependence on the radiation field

Dominant contribution to Hall conductivity comes from the
shift in node spacing
As the amplitude of the radiation field is increased, the
effective chemical potential (µ− C∆) decreases
Anomalous thermal Hall conductivity grows with the
amplitude of the irradiation field
Linearized model predicts a linear dependence of Kxy on µ
in the type-I regime
Nernst conductivity is constant and remains unchanged by
the optical field
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Type II WSM

Nernst conductivity and thermal Hall conductivity :

αxy = −
ek2

BTv
6~2C2

[
ln
( C2Λ

v(C∆− µ)

)
− 1
]

Kxy =
ek2

BTv
6C~

[(
Q + ∆

)
− (µ− C∆)

~C
ln
( C2Λ

v(C∆− µ)

)]
Kxy depends nonlinearly on the chemical potential
Decreases logarithmically for increasing ∆

Changing the amplitude of the photon field affects the
Nernst conductivity

Banasri Basu Anomalous thermal transport in irradiated tilted Weyl Semimetals



Physical momentum cutoff is difficult to estimate without
using a non-linear model
Eliminate the Λ dependence

[− 6~C
k2

BTv
Kxy + Q + ∆]

~C
C∆− µ

=
6~2C2

ek2
BTv

αxy + 1

Provides a way to experimentally verify our findings
independent of the cutoff
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Type1 WSM
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Figure: Type I

Figure: Type II
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Multi-WSM

Multi-Weyl semimetals (mWSMs) have an anisotropic
non-linear dispersion along a 2-D plane
A linear dispersion in an orthogonal direction
topological charge n can be greater than one with the
crystalline symmetries bounding its maximum value to
three
Interesting transport properties

[PRL 107, 186806 (2011), PRL 108, 266802 (2012),
Nature Comm. 5, 4898 (2014), PRB 95, 161113 (2017),
PRB 96, 155138 (2017), JHEP 12, 069 (2018)]
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mWSM Hamiltonian

Low energy Hamiltonian for a mWSM near each Weyl point

Hs
k = ~Cs(kz − sQ) + s~αnσ · (nk − se)

nk = [kn
⊥ cos(nφk), kn

⊥ sin(nφk), vkz
αn

]

e = (0,0,Q), Q is the separation between two Weyl nodes.

φk = Arctan(
ky
kx

) and k⊥ =
√

k2
x + k2

y

Cs: tilt parameter associated with s Weyl node.
For type-I WSM- |Cs|/v � 1 while for type-II |Cs|/v � 1.
We restrict to the inversion symmetric case, sCs = C for
s = ±, C+ = −C− = C

[JHEP 12, 069 (2018)]
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Effective Floquet mWSM Hamiltonian

HF
k = Hs

k + V s
k

= Cs(kz − sQ) + sαnσ · (nk − sQêz)

+
α2

n
ω

n∑
p=1

1
p

(nCpA2
0)pk2n−2p

⊥ σz

= Cs(kz − sQ) + sαnn′k · σ

n′k = (kn
⊥ cos (nφk ) , kn

⊥ sin (nφk ) ,Tk/αn).

Tk = vkz + α2
n
ω

∑n
p=1 β

n
pk2(n−p)
⊥ = ∆n + T ′k

T ′k = vkz + α2
n
ω

∑n−1
p=1 β

n
pk2(n−p)
⊥
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∆n =
α2

nA2n
0

nω - a momentum dependent contribution
n′z-component of the effective Hamiltonian acquires k⊥
contribution coupled with the external electromagnetic field
A0 and ω.
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Vacuum conductivity from Berry curvature

Considering cylindrical polar coordinates for convenience
of integration

σa
xy (n) = e2

∫
dk
4π2

∑
s

Ωs
F (k)

' nα2−2/n
n e2

4π2

∫ z′u

z′l

∫ ∞
0

dk⊥dkz
kzk⊥

(k2
z + k2

⊥)3/2

' nα2−2/n
n e2

2π2 (−Q + ∆n)

Without light σa
xy (n) = −nα2−2/n

n e2

2π2 Q
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Floquet-Kubo formula and thermal responses

K I
xy (n) =

π2

3e2 k2
BTσI

xy

= n
Tk2

B
12

α
2−2/n
n

v
{(Q + ∆n)− C

µ− C∆n

6v2

+ 4β′′2a(M) · µ2/n−2 + 4β′′3a(2M) · µ4/n−2}

αI
xy (n) = e

π2

3e2 k2
BT

dσI
xy

dµ

= n
ek2

B
12
· α

2−2/n
n

v
{− C

6v2 + 4β′′2a(M) · (2
n
− 2)µ2/n−3

+ 4β′′3a(2M) · (4
n
− 2)µ4/n−3}
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Variation of Kxy with ω

Type I Type II
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Type II variation of Kxy with αxy

n = 2 n = 3
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Discussion

Effect of a periodically driving circularly polarised laser
beam on tilted WSM
Analytic study in the high frequency limit
Employ the Kubo formula for the effective Floquet states
For low tilt, i.e for type I WSM, the anomalous thermal Hall
conductivity grows quadratically with the amplitude E0 of
the optical field
Nernst conductivity remains unaffected in type I phase
For type II, the Hall conductivity decreases non-linearly
with E0, while the Nernst conductivity falls off
logarithmically with E2

0
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mWSM

Analytical study of the photoinduced thermal transport in
mWSM using Floquet-Kubo formalism
Anisotropic nature of the dispersion can lead to an extra
momentum dependent Floquet term along with the
momentum independent ∆n term
∆n term gives us the n times single Weyl results in the
conductivity tensor in its leading order
Momentum dependent term leads to the sub-leading
correction in σxy
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Thermal Hall conductivity for n ≥ 2 contains a perturbative
correction which varies non-linearly with µ, leading to a
chemical potential dependent Nernst conductivity, unlike
the type-I n = 1 WSM
For type-II mWSMs, the transport coefficients for n ≥ 2
exhibits algebraic dependence on the momentum cutoff as
compared to the weak logarithmic dependence present in
the n = 1 WSM case

Banasri Basu Anomalous thermal transport in irradiated tilted Weyl Semimetals



Collaborators

Anirudha Menon, Ph.D. Student, University of California,
Davis
Dr. Debashree Chowdhury, Postdoctoral fellow, IOP,
Bhubaneswar
Dr. Tanay Nag, Postdoctoral fellow, SISSA, Trieste
Based on :
PRB 98, 205109(2018) (with AM and DC)
arXiv:1901.06716 (with AM)-under Review with PRB
mWSM- paper (with TN and AM)- in preparation

Banasri Basu Anomalous thermal transport in irradiated tilted Weyl Semimetals



THANK YOU

Banasri Basu Anomalous thermal transport in irradiated tilted Weyl Semimetals


