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Outline of the talk

➢ General features of  EDMs and relationship
 to the Standard Model

➢ Relationship between the electron
 EDM and atomic and molecular EDMs.

➢ Need for a relativistic many-body 
   theory of atomic and molecular EDMs

➢ Future improvements in atomic and      
    molecular theory of EDMs

 



      Permanent EDM of a particle VIOLATES both P - & T – 
invariance.

T-violation implies CP-violation via CPT theorem.

〈 ∣ D ∣ 〉 = c 〈 ∣ J ∣ 〉

⇒ D = 0



EDM and Degeneracy :

D = 〈∣e r∣ 〉 ≠ 0

Consider the degeneracy of opposite parity states in a physical system 

∣ 〉 = a ∣
e
〉  b ∣

o
〉

EDM can be nonzero for degenerate states.

P and T violations in non-degenerate systems implies nonzero 
EDM.



Sources of Atomic EDM

Elementary                                           Coupling             

Particles         Nucleon      Nucleus      constant         Atomic         
         
e (de)                                                de            Da  (open shell)

                                                         Cs           Da   (open shell) 

e-q                    e-n         e-N         

            CT         Da (closed shell)

q (dq)                 dn             dN             Q          Da (closed shell)

q-q                   dn, n-n        dN            Q          Da (closed shell) 
     



Standard Model                                       < 10-38

Super-symmetric Model                        10-24 – 10-28

Left-Right Symmetric Model                     10-25 – 10-30

Multi-Higgs Model        10-25 - 10-29

Particle Physics Model              Electron EDM (e-cm)



ATOMIC EDM DUE TO THE ELECTRON EDM

( NON-RELATIVISTIC CASE )

The interaction between the electron spin and internal 
electric field exerted by the nucleus and the other electrons 
gives, 

The total atomic Hamiltonian is then,
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  When there is an external electric field, induced electric dipole 
moment arises.

  The induced electric dipole moment  of an atom is given by 

                  
  The atomic EDM is

                                   

  Using perturbation theory

  As de is small, de
term can be neglected. 

er

Da = ∑i
{d e  i  e r i}
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D1DO

Assume, the applied field is in the z direction              

Is even under parity and         is odd under parity
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From the Time-independent Non-degenerate perturbation theory,  
we have,

            and             are of opposite parity, then the non-

vanishing terms of the EDM are:
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  Hence, in the non-relativistic scenario, even though the electron 
  is assumed to have a EDM, when all the interactions in the 
  atom are considered, the total atomic EDM becomes zero.

〈 D
a
〉 = 0 ( Sandars 1968 )



D1DO
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The total atomic Hamiltonian, including intrinsic electron EDM 
 is,

The expectation value of atomic EDM in the presence of 

applied electric field is given by, 

ATOMIC EDM DUE TO THE ELECTRON EDM

( RELATIVISTIC CASE )

H /H0



〈D
a
〉 ≠ 0
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Finally, the expression for Atomic EDM reduces to,

    Sandars (1968) and Das (1988)

R =< Da> / de   : is the enhancement factor

Effective H EDM=
2icde

ℏ
βγ5 p2

: Relativistic

 E=−〈D a . E ext 〉=−R E extd eEnergy Shift

Effective field seen by an electron in an atom = R Eext

Effective field in certain molecules can be several orders of 
magnitude larger than in an atom
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The relativistic  atomic Hamiltonian is,

Theory of Atomic EDMs

Treating HEDM as a first-order perturbation, the atomic wave function is 
given by

∣Ψ 〉 = ∣Ψ
(0)

〉 + de ∣Ψ
(1)

〉

The atomic EDM is given by Da =
〈Ψ∣ D ∣Ψ 〉

〈Ψ∣Ψ〉

R=
Da

d e

=
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(0)
∣ D ∣Ψ

(1)
〉 + 〈Ψ

(1)
∣ D ∣Ψ

(0)
〉

〈Ψ
(0)

∣Ψ
(0)

〉
This ratio, known as the enhancement factor, is calculated by 
relativistic many-body theory.

Unique many-body problem involving the interplay of the long range 
Coulomb interaction and short range P- and T-violating interactions.

     Accuracy depends on precision to which ∣ 
0 

〉 ∣ 
1

〉 are calculated.and



Relativistic Wavefunctions of Atoms 

Atoms of interest for EDM studies are relativistic many-body systems;

Wavefunctions of these atoms can be written in the mean field approximation
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1
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N
} (Relativistic Dirac-Fock 

wavefunction)
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∣ 0  〉 = exp T  ∣
0
〉Relativistic Coupled-cluster (CC)  

wavefunction;

H
0
− E

0
∣  1  〉 = − H

PTV
∣ 0 〉First-order EDM Perturbed RCC wfn. 

satisfies :

CC wfn. has electron correlation to all-orders of perturbation theory for any level 
of excitation.

∣ 〉 = ∣ 0  〉  d e∣
1 〉 = exp {T  de T 1}∣0 〉In presence of EDM,



EDM enhancement factor in the RCC method

∣Ψ
(0)
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Unperturbed RCC wave 
function:

EDM enhancement factor:
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D Sv
1

Sv
0 † DT 1

DT 1Sv
0

Sv
0 † D Sv

1

Sv
0 † DT 1Sv

0

5.18

122.21

94.19DF

0.53

-0.01

-7.34

-0.05

Total                120.53     124*

RCCSD(T) 
term

Cs  EDM enhanc- 
ment factor

Tl  EDM enhanc-
ment factor

-422.02

-333.33

-101.07

-24.82

-7.12

-4.26

-0.56

-466.31  -582* -585** -573***

Cs: Nataraj et al., Phys. Rev. Lett. (2008)     *Dzuba and Flambaum PRA (2009)
Tl: Nataraj et al,. Phys. Rev. Lett. (2011)     **Liu and Kelly PRA(1992)

***Porsev et al PRL(2012)

T and S are core and
 valence excitation
 operators. 



The measured value of Da in combination with the calculated 
value of Da/d

e 
will give d

e
 .

From Tl  EDM experiment (Regan et al, PRL 2002) and theory (Nataraj 
et al, PRL 2011) :

              de< 2.0 X 10-27 e-cm (90% confidence limit)

This is a new upper limit for the electron EDM

Most recent new limit from YbF:          
          de< 1.0 X 10-27 e-cm (90% confidence limit)
 
         Hudson et al, Nature, 2011

New Electron EDM limit



Ongoing EDM Experiments and Theory Using     
Paramagnetic Atoms

Improved accuracies in experiments and relativistic many-body 
theory for de might be possible in the future.

Rb:          Weiss, Penn State

Cs:          Gould, LBNL ; Heinzen, UT, Austin; Weiss, Penn State

Fr:           Sakemi, Tohoku

Ra*:         Jungmann, KVI, Netherlands        

Theory :Theory :  Flambaum, UNSW, Sydney ;  Porsev and Kozlov, St. Petersburg, 
State Univ.; Safronova, U of Delaware; Sahoo, PRL, Ahmedabad; Nataraj, IIT 
Roorkee, Das, IIA, Bangalore

Experiments :Experiments :



Molecular EDMs 

The shift in energy is given by:

The effective electric field in certain molecules interacting with the 
electron EDM can be several orders of magnitude larger than those in 
atoms. It can be expressed as

Some of the current molecular EDM experiments that are underway are : 

YbF :  Hinds, Imperial College, London

PbO * and ThO  :  DeMille, Yale, Doyle and Gabrielse, Harvard

HfF + :   Cornell, JILA, Colorado

The sensitivities of these experiments could be 2-3 orders of magnitude better 
than that of the best electron EDM limit from atomic Tl.

Calculations of the effective fields in molecules are currently in their infancy.

H = Hm − de∑
i

 i i⋅Ei
I

Δ E=− 〈Ψm∣d e∑
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βiσ i⋅Ei
I
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βi σ i⋅Ei
I
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∣Ψm 〉



Calculations of effective fields in molecules using Coupled Cluster 
Theory

∣Ψ 〉=eS
∣Φ0 〉 where S=S1+ S2+ ... S1=∑

a , p

Sa
pa p

† aa; S2= ∑
ab , pq

Sab
pq a p

† aq
† ab aaand

〈 Ψ̃∣=〈Φ0∣S̃ e−S where S̃=1+ S̃1+ S̃2+ ... and S̃1=∑
a , p

S̃a
paa

†a p; S̃2= ∑
ab , pq

̃Sab
pq aa

† ab
† aqa p

S , S̃ amplitudes are solved using suitable equations :

〈 A 〉=
〈 Ψ̃∣A∣Ψ 〉

〈 Ψ̃∣Ψ 〉
=〈 Ψ̃∣A∣Ψ 〉=〈Φ0∣S̃ e−S A eS

∣Φ0 〉

The effective field can be expressed as an expectation value as 
mentioned in the previous slide.

Expectation Values in CC Theory

H∣Ψ 〉=E∣Ψ 〉

〈 Ψ̃∣H=〈 Ψ̃∣E

For molecular EDMs, A = 2icdeβγ5p2

Future : Extended Coupled Cluster Method 

〈Ψ∣=〈Φ0∣e
S †

Normal Coupled Cluster Method



Cs, Fr, YbF, 
HfF+, ThO

2010

Limits on de : Past, Present and Future



Conclusions

Atomic and molecular EDMs arising the electron EDM could serve as 
excellent probes of physics beyond the standard model and shed light
on CP violation.

Relativistic many-body theory plays a crucial role in determining an upper 
limit for the electron EDM

The current best electron EDM limits come from Tl  and YbF

Several Atomic ( Rb, Cs, Fr, etc. ) and Molecular ( YbF, HfF+, ThO,  etc ) EDM 
experiments are underway. Results of some of these experiments could in  
combination with relativistic many-body calculations  improve the limit for 
the electron EDM.







Aside



  .  .  .  Dirac - Fock Theory 

For a relativistic N-particle system,  we have a Dirac-Fock equation given by,
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We represent the ground state wave function  as an N×N Slater 
determinant,
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METHOD OF CALCULATION 
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. . .  Coupled Cluster Theory

The coupled cluster wave function for a closed shell atom is 
given by,

Since the system considered here has only one valence electron, it 
reduces to
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The RCC operator amplitudes can be solved in two steps; first we solve for 

closed shell amplitudes using the following equations:
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The total atomic Hamiltonian in the presence of EDM as a perturbation is 
given by,
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The effective ( one-body ) perturbed EDM operator is given by,
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Thus, the modified atomic wave function is given by,
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The open shell operators can be obtained by solving the following two 
equations :

Where,              is the negative of the ionization potential of the valence 
electron v.

 E
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The perturbed cluster amplitudes can be obtained by solving the following 

equations self consistently :
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The atomic EDM is given by, 
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EXPERIMENTS ON ATOMIC EDM

. . .  Principle of 
Measurement

If the atomic EDM Da ~ 10-26 e-cm and E = 105 V/cm;  
∆ ~ 10-5 Hz

Major source of error: 
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