Cell Stretching

Bidisha Sinha

IISER-Kolkata

Why stretch Cells

- •Cells undergoing various kinds of strech in their lifetimes.
- •Resting state is different from the « in stretch » state
- Cells adaprt when taken from resting to stretched state
- Once stretched for long its nomore stretched
- •Continuous cyclic stretch is a different configuration altogether
- •Remodeled: Cell Orientation, actin cytoskeleton, signaling
- •Strained state for the membrane. Understanding changes undergone and whats regulated.

The stretchable substrate

PDMS: Polydimethylsiloxane

Prepolymer: Fluid/ viscous; +crosslinking reaction: Elastic

•Hydrophobicity: contact angle 90-120 degrees

•Refractive Index: ~ 1.4

Surface Chemistry: tunable

Stiffness: tunable

Other Polymers: h-PDMS, photocurable perfluoropolyethers (PFPE), cyclic olefin copolymer (a thermoplastic polymer), thermoset polyester, polymethylmethacrylate, polycarbonate, and polyurethanes

The Good

Tensile Strength: 2.24 MPa

The Not-so-good

Optical Properties

TABLE II
PDMS REFRACTIVE- INDEX CHANGES FOR VARYING CURING CONDITIONS

Sample	Curing Temperature (°C)	Curing Period	Refractive index	
			$460\mathrm{nm}$	$610\mathrm{nm}$
1	25 (RT)	48 hours	1.451	1.416
2	50	60 minutes	1.465	1.417
3	100	30 minutes	1.465	1.422
4	100	60 minutes	1.466	1.421
5	150	30 minutes	1.469	1.432
6	150	60 minutes	1.472	1.432

Various ways of stretching

- Uniaxial
- Biaxial
- 3. Stretching by bending/swelling

Equibiaxial Stretch

Our Stretcher

Key requirements:

- •Compatible with inverted microscopes, small working distance objectives
- Imaging live cells during stretch
- •Modular, simple design where multiple samples can be loaded easily

Stretching Device :-

Strain in your cell of interest

40×/0.75 NA

100x 1.45 NA

Micropattern to stop cell reorientation

Continuous imaging while stretching

movie

Total Internal Reflection Fluorescence M

To burst or not

RBC that burst

