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Plan

1. What is holography?

2. How do we find examples of holography?

3. How do we test holography?



What is holography?

A theory of quantum gravity on certain space-time,
known as anti-de Sitter (AdS) space-time, is
equivalent to a conformally invariant quantum field
theory (CFT) in one less dimensions.



What is an AdS space-time?

Consider a flat space-time with n space coordinates
(w1, · · ·wn) and two time coordinates (y1,y2)

In this space describe an (n+1) dimensional subspace
by the equation:

(w1)2 + · · · (wn)2 − (y1)2 − (y2)2 = −R2

Locally this describes an n+1 dimensional AdS space
AdSn+1.

By a suitable coordinate transformation we can use
coordinates x0, · · · xn−1, z such that the metric is given
by

R2 z−2 diagonal matrix (−1,1, · · · 1)



metric = R2 z−2 diagonal matrix (−1,1, · · · 1)

ds2 = R2 z−2 {−(dx0)2 + (dx1)2 + · · · (dxn−1)2 + dz2}
R: size of AdS space ds: proper distance element

Note that the metric component goes to infinity as z
approaches 0.

The distances between points separated by finite
difference between the xµ’s become larger and larger
in this limit.



ds2 = R2 z−2 {−(dx0)2 + (dx1)2 + · · · (dxn−1)2 + dz2}
z

z = ε

z=0 is called the boundary of the anti de Sitter
space-time.

For practical calculations we place the boundary at
z = ε where ε is some small number.



What is a CFT?

A quantum field theory which, besides being Lorentz
invariant, is invariant under scale and special
conformal transformations:

xµ → λxµ, xµ → (xµ − bµx2)/(1− 2b.x + b2x2)

Example: Maxwell’s theory without sources is
conformally invariant in four space-time dimensions.

We shall denote by CFTn a conformal field theory in n
space-time dimensions.



Recall AdSn+1 metric:

ds2 = R2 z−2 {−(dx0)2 + (dx1)2 + · · · (dxn−1)2 + dz2}
Note that for z = ε the metric in the x0, · · · xn direction
is just the Minkowski metric up to an overall factor of
1/ε2:

ds2 = R2 ε−2 {−(dx0)2 + (dx1)2 + · · · (dxn−1)2}
Holography: A theory of quantum gravity in AdSn+1 is
equivalent to a CFTn in the n-dimensional Minkowski
space at the boundary of the AdS space. Maldacena



Why is holography important?

Often it maps difficult problems in quantum field
theory to simple questions in classical gravity in
appropriate limit.

More importantly, holography allows us to give a
precise definition of quantum gravity in certain
space-times by relating it to an ordinary quantum
field theory whose rules are quite well understood.



How do we find examples of holography?

Is there a systematic way of deciding which theory of
quantum gravity on AdSn+1 is dual to which CFTn?

At present we only know the answer to this in a small
class of examples.

(Each ‘class’ contains an infinite number of examples)

From now on we shall restrict our discussion to
string theory.



String theory is a quantum theory of gravity in which
elementary ‘particles’ are replaced by one
dimensional string like objects.

However besides these fundamental strings, string
theory contains many other ‘composite’ objects
which could have higher or lower number of
dimensions.

Example: Type IIB string theory in ten space-time
dimensions has an object extending in 3 directions

– called a D3-brane (Dirichlet 3-brane)

(generalization of membrane which extends in
2-directions).



In general, the dynamics of these composite objects
is complicated involving infinite number of ‘internal
vibrational modes’.

However in the low energy limit the dynamics of a
p-brane – a p-dimensional extended object – is
described by some quantum field theory in p+1
dimensions.

Examples:

Dynamics of a point-like object (0-brane) is described
by quantum mechanics – a 0+1 dimensional quantum
field theory.

Dynamics of a string (1-brane) is described by a 1+1
dimensional quantum field theory.



A non-trivial example:

The dynamics of N D3-branes in 9+1 dimensional type
IIB string theory is described by a specific 3+1
dimensional quantum field theory known as N = 4
supersymmetric non-abelian gauge theory based on
the group U(N).

This theory is known to be invariant under conformal
transformations.



However there is another way of describing the same
system.

Since string theory is a theory of gravity, the
D3-branes produce gravitational field (and also other
fields).

Thus we can try to describe them as solutions to
classical equations of motion of gravity (and other
fields which are present in string theory.)

It turns out that the solution corresponds to the zero
temperature (extremal) limit of a black 3-brane
solution.



Horizon

Due to gravitational red shift, modes of excitation
near the horizon of this black hole appear to be of
extremely low energy from the point of view of an
observer far away from the branes.



The dynamics of these low energy modes is given by
string theory in the ‘near horizon geometry’ – the
geometry of the black brane near the horizon.

For D3-branes the near horizon geometry is AdS5×S5

– the direct product of a five dimensional AdS space
and a five dimensional sphere.



Thus we have two different descriptions of the low
energy dynamics of a system of N D3-branes.

– an N = 4 supersymmetric U(N) gauge theory

– type IIB string theory in AdS5 × S5 background.

Conjecture: These two theories must be equivalent.
Maldacena

A consistency check: The symmetries of the two
theories match.

The first theory has supersymmetry + conformal
symmetry

This agrees with the supersymmetry and the
geometrical symmetries of the second theory.



Another example

String theory in certain limit reduces to 11
dimensional supergravity.

In this theory there is a classical soliton solution that
extends in two space directions.

– a membrane, known as the M2-brane.

We can put several of these membranes on top of
each other.



Again this system has two equivalent descriptions.

The low energy dynamics of these membranes is
described by some quantum field theory in 2+1
dimensions.

– known to be some kind of supersymmetric
Chern-Simons theory (ABJM theory) in 2+1
dimensions. Aharony, Bergman, Jafferis, Maldacena

On the other hand the near horizon geometry is
AdS4 × S7.

Conjecture: String theory on AdS4 × S7 must be
equivalent to the ABJM theory.



A third class of examples

In many string theories we have supersymmetric
(extremal) black holes.

A typical situation:

1. Begin with string theory on K× R3,1 where K is
some compact space and R3,1 is a Minkowski space
with 3 space and 1 time direction.

2. This at low energy gives some gravitational theory
in 3+1 space-time dimensions.

3. Now in this theory we can find extremal, i.e. zero
temperature, black hole solutions.



Near horizon geometries of these black holes take the
form

AdS2 × S2 × K

S2: an 2 dimensional sphere, labelled by the usual
polar and azimuthal angles.

Thus we expect that the low energy dynamics of
these black holes is described by string theory on

AdS2 × S2 × K



If we can find an alternative low energy description
then we again have an example of AdS/CFT
correspondence.

Look for the microscopic system which produces this
black hole geometry in the string theory on

K× R3,1

Typically these are given by a combination of many
different kinds of branes oriented in different ways
along the compact space K.



Since many different kinds of branes are involved, the
dynamics is usually more complicated, but overall it
produces a quantum mechanical system.

The spectrum contains degenerate ground states
separated by an energy gap from the excited states.

Thus in the low energy limit we only keep the ground
state.

⇒ the low energy description is a quantum
mechanical system with a finite dimensional Hilbert
space, all with the same energy (which can be taken
to be zero by a shift)



This leads to the equivalence between:

1. String theory on

AdS2 × S2 × K

and

2. A quantum mechanical system with finite
dimensional Hilbert space and zero Hamiltonian.

This can be generalized to cases where the black hole
is embedded in n+1 dimensional space-time instead
of 3+1 dimensional space-time.



There is also another approach to finding examples of
AdS/CFT correspondence.

Make a clever guess.

There have been many recent discoveries of such
correspondences involving higher spin theories of
gravity.

Sezgin, Sundell; Klebanov, Polyakov; Giombi, Yin; Gaberdiel, Gopakumar; ...



How is an AdS/CFT correspondence tested?

For this we need to know a more precise form of the
conjecture.

What quantities in CFTn are related to what quantities
in quantum gravity on AdSn+1?

One approach to this that we shall follow is based on
the euclidean version of this correspondence.

Gubser, Klebanov, Polyakov; Witten



Recall metric of AdSn+1:

ds2 = R2 z−2 {−(dx0)2 + (dx1)2 + · · · (dxn−1)2 + dz2}
It is useful to analytically continue the time
coordinate x0 to imaginary values (x0 → ix0) and write
the metric of ‘euclidean AdSn+1’

ds2 = R2z−2 {(dx0)2 + (dx1)2 + · · · (dxn−1)2 + dz2}
The boundary at z = ε is an n-dimensional euclidean
space with flat metric:

ε−2 {(dx0)2 + (dx1)2 + · · · (dxn−1)2}



Claim:

Correlation functions of operators in the CFT are
given by the path integral over all the fields in string
theory with appropriate boundary condition in the
AdS space.

Different operators correspond to different boundary
conditions.



A more precise statement:

Suppose Oi(x) for i=1,2,... are a complete set of local
operators in the CFT.

The observables in CFT are different correlation
functions e.g.

〈O1(x1)O2(x2)...〉

Define

ZCFT[φ1, φ2, ...] =< exp[

∫
dnx(φ1(x)O1(x)+φ2(x)O2(x)+...)] >

Then according to AdS/CFT correspondence ZCFT is
given by path integral over all the fields in string
theory with boundary condition at z = 0 set by the
functions φ1(x), φ2(x), · · · .



It is some time useful to work in a different coordinate
system in which the boundary of AdS space is a
sphere instead of flat euclidean space.

ds2 = R2
(

dy2 + sinh2y dΩ2
)

dΩ: distance element on a unit n-dimensional sphere

e.g. for n=2 we have dΩ2 = dθ2 + sin2θdφ2 where (θ, φ)
are the polar and azimuthal angles.

Boundary of AdS is at y =∞.

Regulated boundary at y = y0 describes a sphere of
radius sinh y0.



ds2 = R2
(

dy2 + sinh2y dΩ2
)

y = y0

In these coordinates the path integral over fields in
string theory gives the correlation function of the CFT
on a sphere.

Note: even though for an ordinary field theory
correlation functions on a sphere and flat space are
quite different, for a conformal field theory they are
related by conformal transformation.



This precise relation between CFT and string theory
on AdS has different kinds of applications.

1. We can use this to test AdS/CFT correspondence
provided we can compute both sides of the relation.

2. If we accept AdS/CFT correspondence to be
correct, then we can use this to map a complicated
problem in gauge theory to a simple problem in string
theory and vice versa.



Our goal in the rest of this talk will be to discuss tests
of AdS/CFT.

In order to test AdS/CFT correspondence we need to
compute some quantities independently on both
sides.

On the CFT side these quantities depend on various
parameters of the CFT, e.g. N of U(N) and the
Yang-Mills coupling gYM for N = 4 supersymmetric
Yang-Mills.

On the AdS side also the quantities depend on
various parameters like the size R of AdS and the
string theory coupling gs for type IIB on AdS5 × S5.

AdS/CFT correspondence tells us precise relation
between these parameters.



In principle we should be able to compare the various
quantities in AdS and CFT as functions of these
parameters.

However typically quantities which are easy to
calculate on one side in certain limit of the
parameters are difficult on the other side in the same
limit and vice versa.

This makes testing AdS/CFT difficult.

Nevertheless many clever tests of AdS/CFT have
been performed by focussing on quantities which can
be computed on both sides

– makes use of supersymmetry, large N limit etc.



Most of these tests make use of a limit in which on the
string theory side we can use classical description
i.e. in the limit of small string coupling.

The reason for this is that while quantizing string
theory has been well understood in certain
background, including flat space-time, extending this
to AdS background is still not well-developed.

Thus while the correspondence between classical
string theory on AdS and the dual CFT has been well
tested, its extension to quantum string theory is still
in its infancy.



One could take the point of view that once we have
established the correspondence at the classical level,
we can use the conformal field theory as the
definition of quantum gravity theory in AdS space.

Nevertheless it is useful to ask if this ‘holographically
defined’ quantum gravity obeys the usual rules of
local quantum field theory / string theory, at least in
some approximation.

Example: In quantum field theory, there is continuous
production and annihilation of particle-antiparticle
pair in the vacuum.

Can we see this effect in holographically defined
quantum gravity theory?



A possible strategy

In the low energy limit string theory contains certain
massless particles, including gravitons – the
mediator of gravitational force.

We have standard rules for quantizing the low energy
modes of massless fields in the AdS background.

So if we can isolate quantum effects which depend
only on the low energy modes of massless fields we
can compare them with the prediction from the CFT
side.



Example: Logarithmic corrections

Various quantities computed in the string theory on
AdS may contain terms proportional to log R
for large R.

Such terms typically arise only from quantum effects
of low energy modes of massless fields and does not
require knowledge about massive states or high
energy modes.

Thus these can be computed on the string theory
side and compared with the result from the CFT side
if the latter are calculable.



Example: AdS2/CFT1 correspondence

Recall that AdS2 arises in the near horizon geometry
of extremal black holes, and the CFT1 is a quantum
mechanical system with a finite dimensional Hilbert
space.

The rules of AdS/CFT correspondence tells us that if
Ω is the total number of states in the Hilbert space of
CFT, then we have

Ω = ZAdS

ZAdS: the result of carrying out path integral over all
fields in AdS2 with vanishing boundary condition at
infinity.

In the classical limit this correspondence reduces to the famous
relation between Bekenstein - Hawking - Wald entropy of black
holes and the log of degeneracy of states. Strominger, Vafa; ...



log Ω = log ZAdS

The size R of AdS2 is determined by the charge Q of
the black hole.

R ∝ |Q|

If we can compute the log Q terms in log Ω and log R
terms in log ZAdS, then we have a way to test AdS/CFT
correspondence at the quantum level.



For a class of black holes in string theory we have
exact results for Ω and hence log Ω.

Dijkgraaf, Verlinde, Verlinde; Shih, Strominger, Yin; Gaiotto; David, Jatkar, A.S., · · ·

For the same system we can also calculate the log R
terms in log ZAdS by quantizing massless fields in the
AdS background.

One finds perfect agreement.



Results: S. Banerjee, Gupta, Mandal, A.S.; Ferrara, Marrani; A.S.

The theory scaling of charges logarithmic contribution result for

to log ZAdS log Ω

N = 4 with nv matter Qi ∼ Λ, R∼ Λ 0
√

N = 8 Qi ∼ Λ, R ∼ Λ −8 ln Λ
√

N = 2 with nV vector and nH hyper Qi ∼ Λ, R∼ Λ 1
6 (23 + nH − nV) ln Λ ?

N = 6 Qi ∼ Λ, R∼ Λ −4 ln Λ ?

N = 5 Qi ∼ Λ, R∼ Λ −2 ln Λ ?

N = 3 with nv matter Qi ∼ Λ, R∼ Λ 2 ln Λ ?

BMPV in type IIB on T5/ZZN Q1, Q5, n ∼ Λ − 1
4 (nV − 3) ln Λ

√

or K3× S1/ZZN with nV vectors J ∼ Λ3/2, R∼ Λ1/2

BMPV in type IIB on T5/ZZN Q1, Q5, n ∼ Λ − 1
4 (nV + 3) ln Λ

√

or K3× S1/ZZN with nV vectors J = 0, R∼ Λ1/2



A similar analysis can be carried out for AdS4/CFT3
correspondence.

In this case we have a relation

ZAdS = ZCFT

ZCFT: partition function of the CFT on a sphere with all
the φi ’s set to zero.

On the AdS side this corresponds to path integral
with all fields set to zero at the boundary.



log ZAdS = log ZCFT

Recall that here the CFT is described by the low
energy dynamics of N membranes given by ABJM
model.

The size R of AdS is proportional to N1/6.

ZCFT has been exactly calculated as a function of N.
Drukker, Marino, Putrov

Thus if we can calculate log R terms in log ZAdS, then
we can compare it with the log N term in log ZCFT to
test AdS/CFT at the quantum level.

Result: −3
2 log R on both sides!

More tests are in progress. Bhattacharyya, Grassi, Marino, A.S.



While the above analysis tests the quantum nature of
the massless particles in AdS, it does not address the
following question:

Is the holographically defined quantum gravity theory
a quantum string theory?

If so, the vacuum should have continuous creation
and annihilation of pairs of heavy string states.

Can we see the effect of this in the dual CFT?

In the AdS2/CFT1 example, this can be seen in certain
terms in the expression for log Ω as a function of the
charges.

Cardoso, de Wit, Kappeli, Mohaupt; David, Jatkar, A.S.



A term in the expression for log Ω and log ZAdS in a
specific example:

12 ln τ2 + 24 ln η(τ1 + iτ2) + 24 ln η(−τ1 + iτ2)

η: Dedekind function

τ1, τ2 are functions of ratios of charges.

In log Ω this comes from the exact result.

In ZAdS this comes from the effect of creation and
annihilation of massive string states in the vacuum.

This (and other similar) agreements cannot be
accidental, and indicates that AdS/CFT
correspondence really holds at the quantum level.



Summary

AdS/CFT correspondence has given us a new way of
defining quantum theory of gravity in Anti-de-Sitter
space-times.

We have also seen that whenever old ways of dealing
with quantum gravity / string theory are valid, the
results of the CFT agree perfectly with the old ways.

Perhaps this will show us a way to modify our old
ways of describing quantum gravity so as to make
this into an exact description, valid in general
background.

Or perhaps there is even a completely new
description of both quantum gravity and quantum
field theories which demystifies many of the
mysteries in either description.


