ICTS School on Understanding Molecular Simulation 4th-13th November, 2010

Free energy calculations

Pankaj A. Apte Department of Chemical Engineering Indian Institute of Technology, Kanpur

Free energy calculations

- Thermodynamic integration
- Free energy perturbation

<u>Thermodynamic integration(TDI)</u>

Change in free energy along a <u>reversible</u> path

Reversible path: succession of equilibrium states

Hysteresis in TDI method

- arises from <u>difference</u> in forward and reverse paths
- is a sign of <u>irreversibility</u>

• usually associated with a <u>first-order</u> phase transition

Hysteresis in TDI method

Hysteresis in TDI method

First order transition must be avoided

TDI method using molecular simulations:

- Advantage is that non-physical paths possible
 - Versatility : reversible paths & reference states
- Important applications include:
 (1) phase diagram calculation
 (2) interfacial properties

W = $\Delta U + \Delta U_R$ $\Delta U_R = T \Delta S_R$ $\Delta S_{tot} = \Delta S + \Delta S_R$ $\Delta U_R = T(\Delta S_{tot} - \Delta S)$

$$W = \Delta U + T(\Delta S_{tot} - \Delta S)$$
$$= \Delta F + T\Delta S_{tot}$$

8

Maximum work theorem

 $W = \Delta F + T \Delta S_{tot}$

Second law of Thermodynamics: $\Delta S_{tot} \ge 0$ $W \geq \Delta F$ System Forward path : $W^{F} \ge \Delta F$ A → B System Reverse path : $W^{R} \geq -\Delta F$ $B \longrightarrow A$ $W^{R} \leq \Delta F \leq W^{F}$

Maximum work theorem

$$\mathbf{W}^{\mathsf{R}} \leq \Delta \mathbf{G} \leq \mathbf{W}^{\mathsf{F}}$$

Conditions of coexistence are:

 $T^{I} = T^{II}$ $P^{I} = P^{II}$ $\mu^{I} = \mu^{II}$

At a given T and P, calculate $\Delta \mu$ $\Delta \mu = \frac{\Delta G}{N} = \frac{\Delta F + \Delta (PV)}{N}$

11

At a given T and P, compute ΔF or ΔG

$$\left| \text{Ref. I} \right| \xleftarrow{} Phase I$$

NVT or NPT simulations along the path

<u>Liquid phase free energy</u>: <u>Ideal gas</u> as a reference state.

Liquid phase free energy:

$$\Delta(\beta F) = \int_{L}^{S} d\beta U(\beta, V, N)$$
$$(\Delta F)_{s} = N \int_{D}^{S} d\rho \left(\frac{P - \rho kT}{\rho^{2}}\right)$$

Solid phase free energy: (non-physical path)

$$\varphi(\lambda) = \lambda \varphi_{\rm S} + (1 - \lambda) \varphi_{\rm E}$$

15

Solid phase free energy: (non-physical path)

crystal phase Einstein crystal $\varphi_{\rm E}(\vec{r}_{\rm 1},...,\vec{r}_{\rm N}) = N \varphi_{\rm 0} + \frac{K}{2} \sum_{i=1}^{\rm N} (\vec{r}_{\rm i} - \vec{R}_{\rm i})^2$ K = harmonic spring constant, $\varphi_{\rm 0} = \text{static lattice energy, } \varphi_{\rm E} > \varphi_{\rm 0}$ Ref: J. Chem. Phys., **79**, 5095-5104, 1983

Solid phase free energy: (non-physical path)

Other methods for solid free energy

single occupancy cell methodHarmonic solid method

Direct calculation of free energy difference

Refs : J. Chem. Phys., **120**, 2122 ,2004 → Δ F (NVT) Phys. Rev. E, **73**, 016704, 2006 → Δ G (NPT) Constrained fluid λ -integration Method

•Direct computation of crystal-melt free energy

- •3-stage reversible path
- •Can be applied to both NVT and NPT ensembles

Refs : J. Chem. Phys., **120**, 2122 ,2004 $\rightarrow \Delta F$ (NVT) Phys. Rev. E, **73**, 016704, 2006 $\rightarrow \Delta G$ (NPT) Constrained fluid λ -integration Method (NPT version)

λ₁=0.0

 $\lambda_1 = 1.0 \text{ or } \lambda_2 = 0.0$

The potential energy states along the path is given by

$$\phi_1(\lambda_1) = (1 - \eta \lambda_1)U$$

(1.7)

$$\Delta G_1 = \int_0^1 d\lambda_1 \langle -\eta U \rangle_{\lambda_1}$$
(1.8)

Gas like state

solid like state

 $\lambda_1 = 1.0 \text{ or } \lambda_2 = 0.0$

 $\lambda_2 = 1.0 \text{ or } \lambda_3 = 0.0$

The total potential energy state for the second stage is given by

$$\phi_{2}(\lambda_{2}) = (1 - \eta)U + \lambda_{2}U_{ext}$$
(1.9)
$$\Delta G_{2} = \int_{0}^{1} d\lambda_{2} \langle U_{ext} \rangle_{\lambda_{2}}$$
(1.10)

STAGE 3 solid like state Solid phase

 $\lambda_2 = 1.0 \text{ or } \lambda_3 = 0.0$

 $\lambda_3 = 1.0 \text{ or } \lambda_1 = 0.0$

The total potential energy in the third stage is given by

$$\phi_{3}(\lambda) = [(1-\eta) + \lambda_{3}\eta]U + (1-\lambda_{3})U_{ext}$$
(1.11)
$$\Delta G_{3} = \int_{0}^{1} d\lambda_{3} \langle \eta U - U_{ext} \rangle_{\lambda_{3}}$$
(1.12)

Applications:

- Melting temperature of Benzene, NaCl (J. Chem.Phys., 122, 014115, 2005)
 Suface energy calculation of Au [110] crystal (J. Chem. Phys., vol. 122, p. 064711, 2005)
- 3. Melting temperature of binary mixture (J.Chem.Phys, 123, 194503, 2005)
 4. Sublimation temperature
 - (J. Chem Phys, 124, 184106, 2006)

<u>Example</u>

- Melting temperature of silicon
- Stillinger weber potential (Phys. Rev. B, vol. 31, 5262, 1985)

- Pressure P*=0
- Temperature T* = 0.0667 (1678 K)
- N=1000 particles

 \mathcal{P}_2

Extension to binary systems

At a given value of T, P, $(\mu_2 - \mu_1)$: find $\Delta \mu_1 = \mu_1^{II} - \mu_1^{II}$

Use semi-grand canonical ensemble

Ref: J. Chem. Phys., 123, 194503, (2005)

Gibbs-Duhem Integration

Ref: D. A. Kofke, J. Chem. Phys., 98, 4149-4150 (1993)

Free energy perturbation (FEP) method

$$\Delta F = \log \frac{Z_0}{Z_1}$$

= - log \langle exp[\Phi_0 - \Phi_1] \rangle_0
= log \langle exp[\Phi_1 - \Phi_0] \rangle_1

Single stage FEP

Accuracy depends on Degree of overlap of the two ensembles

Free energy perturbation (FEP) method

$$\Delta F = \log \frac{\sum_{1} f(\phi_{0} - \phi_{1} + C)}{\sum_{0} f(\phi_{1} - \phi_{0} - C)} + C - \log \frac{n_{1}}{n_{0}}$$

Bennett Acceptance Ratio method

$$\sigma^2 \approx \frac{\langle f^2 \rangle_0 - \langle f \rangle_0^2}{n_0 \langle f \rangle_0^2} + \frac{\langle f^2 \rangle_1 - \langle f \rangle_1^2}{n_1 \langle f \rangle_1^2}$$

$$\Delta F = C_B - \log \frac{n_1}{n_0}$$

Ref: C. H. Bennett, J. Comput. Phys., 22, 245-268 (1976)

38