Eigenfunction Expansions of Ultradifferentiable Functions and Ultradistributions

Aparajita Dasqupta

Department of Mathematics Imperial College London

6th March 2018

Outline

- Compact Lie groups
 - Motivation
 - Fourier analysis on Compact Lie groups
 - Result
 - Gevrey Classes
 - Ultradistributions
- Compact Manifold
 - Aim
 - Fourier Analysis on Compact Manifold
 - Results
 - Ultradifferentiable functions
 - Ultradistributions

On \mathbb{R}^n , $n \geq 2$,

Heat Operator:

$$L = \frac{\partial}{\partial x_n} - \sum_{j=1}^{n-1} \frac{\partial^2}{\partial x_j^2}.$$

The fundamental Solution:

$$E(x) = \begin{cases} (4\pi x_n)^{\frac{(1-n)}{2}} \exp\left[-\frac{(x_1^2 + \dots + x_{n-1}^2)}{4x_n}\right], & x_n > 0\\ 0 & x_n \le 0 \end{cases}$$

 $E \in C^{\infty}(\mathbb{R}^n \setminus 0)$, but is not analytic for $x_n = 0$.

Motivation

But for any fixed compact subset $K \subset \mathbb{R}^n$, $0 \notin K$,

$$|\partial^{\alpha} E(x)| \le C^{|\alpha|+1} (\alpha!)^2, \quad x \in K.$$

Generalizing this the Gevrey spaces on \mathbb{R}^n were defined.

L. Rodino, "Linear partial differential operators in Gevrey spaces." World Scientific Publishing Co., Inc., River Edge, NJ, 1993.

Let G be a compact group of dimension n.

 \widehat{G} : set of equivalence classes of continuous irreducible unitary representations of G.

Irreducible Unitary representation:

 $\overline{\mathsf{A}}$ strongly continuous mapping $\xi: \overline{G} \to \mathcal{U}(H_{\xi}),$

- $\xi(x)^* = \xi(x)^{-1}$ (unitary)
- $\xi(xy) = \xi(x)\xi(y)$ (preserves group structure)
- $\xi \neq \xi_1 \oplus \xi_2$ for some unitary representations ξ_1, ξ_2 (irreducible)

$$\dim(\xi) = \dim(\mathcal{H}_{\xi}) = d_{\xi}$$

 $\xi_{ij}(x) = \langle e_i, \xi(x)e_j \rangle$, where $\{e_j\}_{j=1}^{d_{\xi}}$ is an orthonormal basis of \mathcal{H}_{ξ}

$$\xi = (\xi_{ij})_{i,i=1}^{d_{\xi}} \in \mathbb{C}^{d_{\xi} \times d_{\xi}}$$

• Fourier coefficient: $\hat{f}(\xi)$ of $f \in C^{\infty}(G)$ at $\xi \in \hat{G}$ is

$$\hat{f}(\xi) = \int_{G} f(x)\xi(x)^{*} dx$$

Note that $\hat{f}(\xi) \in \mathbb{C}^{d_{\xi} \times d_{\xi}}$ is a matrix!

Plancheral Identity:

$$||f||_{L^2(G)} = \left(\sum_{[\xi] \in \hat{G}} d_{\xi} ||\hat{f}(\xi)||_{HS}^2\right)^{1/2} = ||\hat{f}||_{\ell^2(\hat{G})}$$

where
$$||B||_{HS} = \sqrt{\text{Tr}(BB^*)}$$

Fourier inversion formula/ Fourier series:

$$f(x) = \mathcal{F}^{-1}(\hat{f}) = \sum_{\xi \in \hat{G}} d_{\xi} \mathrm{Tr} \left(\hat{f}(\xi) \xi(x) \right).$$

Fourier Analysis

• For each $[\xi] \in \hat{G}$,

$$-\mathcal{L}_G \xi_{ij}(x) = \lambda_{\xi}^2 \xi_{ij}(x), \quad 1 \le i, j \le d_{\xi}$$

 $\{\sqrt{d_{\varepsilon}}\xi_{ii}\}$ is an orthonormal basis of $L^{2}(G)$.

Denote
$$|\xi|:=\lambda_{\xi}\geq 0$$

• $\langle \xi \rangle = \left(1 + \lambda_{[\xi]}^2\right)^{1/2}$ are the eigenvalues of elliptic first order pseudo-differential operators $(I - \mathcal{L}_G)^{1/2}$.

Gevrey Functions

Let $0 < s < \infty$.

Definition

The Gevrey-Romieu class, $\gamma_s(G)$ (Gevrey-Beurling class, $\gamma_{(s)}(G)$) is the space of functions $\phi \in C^\infty(G)$ for which there exists (for every) constants A>0 and C>0 (there exists $C_A>0$) such that and for all multi-indices α , we have

$$||\partial^{\alpha}\phi||_{L^{\infty}} = \sup_{x \in G} |\partial^{\alpha}\phi(x)| \le CA^{|\alpha|}(\alpha!)^{s}.$$

Result

Let $0 < s < \infty$.

Definition

The Gevrey-Romieu class, $\gamma_s(G)$ (Gevrey-Beurling class, $\gamma_{(s)}(G)$) is the space of functions $\phi \in C^\infty(G)$ for which there exists (for every) constants A>0 and C>0 (there exists $C_A>0$) such that and for all multi-indices α , we have

$$||\partial^{\alpha}\phi||_{L^{\infty}} = \sup_{x \in G} |\partial^{\alpha}\phi(x)| \le CA^{|\alpha|}(\alpha!)^{s}.$$

$$||\partial^{\alpha}\phi||_{L^{\infty}} = \sup_{x \in G} |\partial^{\alpha}\phi(x)| \le \frac{C_A}{A^{|\alpha|}} (\alpha!)^s.$$

Gevrey Functions

Theorem

(R) We have $\phi \in \gamma_s(G)$ if and only if there exists B>0 and K>0 such that

$$||\widehat{\phi}(\xi)||_{\mathsf{HS}} \le Ke^{-B\langle\xi\rangle^{1/s}}$$

holds for all $[\xi] \in \widehat{G}$.

(B) We have $\phi \in \gamma_{(s)}(G)$ if and only if for every B > 0 there exists $K_B > 0$ such that

$$||\widehat{\phi}(\xi)||_{\mathsf{HS}} \leq K_B e^{-B\langle \xi \rangle^{1/s}}$$

holds for all $[\xi] \in \widehat{G}$.

Gevrey Ultradistributions

 $\gamma_s'(G)$ (or $\gamma_{(s)}'(G)$): the space of continuous linear functionals on $\gamma_s(G)$ (or $\gamma_{(s)}(G)$) is called the space of ultradistributions.

Theorem

Let $1 \leq s < \infty$.

We have $v \in \gamma'_s(G)$ (or $\gamma'_{(s)}(G)$) if and only if for every B > 0 there exists $K_B > 0$ (there exists B > 0 and K > 0) such that

$$||\widehat{v}(\xi)||_{\mathsf{HS}} \leq K_B e^{B\langle \xi \rangle^{1/s}}$$

Result

 $\gamma'_s(G)$ (or $\gamma'_{(s)}(G)$): the space of continuous linear functionals on $\gamma_s(G)$ (or $\gamma_{(s)}(G)$) is called the space of ultradistributions.

Theorem

Let $1 \leq s \leq \infty$.

We have $v \in \gamma'_s(G)$ (or $\gamma'_{(s)}(G)$) if and only if for every B > 0 there exists $K_B > 0$ (there exists B > 0 and K > 0) such that

$$||\widehat{v}(\xi)||_{\mathrm{HS}} \leq K_B e^{B\langle \xi \rangle^{1/s}}$$

$$(||\widehat{v}(\xi)||_{\mathsf{HS}} \leq Ke^{B\langle \xi \rangle^{1/s}}), \ \forall \ [\xi] \in \widehat{G}.$$

$$\widehat{v}(\xi) = v_{\xi} := \langle v, \xi^* \rangle = v(\xi^*).$$

A. Dasgupta and M. Ruzhansky, "Gevrey functions and ultradistributions on compact Lie grups and homogenous spaces." Bull. Sci. Math., 138(6): 756-782, 2014.

Applications

Consider the Cauchy problem for the wave equation

$$\partial_t^2 u - a(t) \mathcal{L}_G u = 0.$$

 \parallel

Global Characterisations of Gevrey space + Energy inequality \implies well posedness result.

C. Garetto and M. Ruzhansky, "Wave equation for sums of squares on compact Lie groups." *J. Differ. Equ.*, 258(12): 4324-4347, 2015.

Outline

- Compact Lie groups
 - Motivation
 - Fourier analysis on Compact Lie groups
 - Result
 - Gevrey Classes
 - Ultradistributions
- Compact Manifold
 - Aim
 - Fourier Analysis on Compact Manifold
 - Results
 - Ultradifferentiable functions
 - Ultradistributions

Analytic functions

X be a compact analytic manifold.

E: an analytic, elliptic, positive differential operator of order ν . $\{\lambda_j\}$ and $\{\phi_j\}$ be respectively eigenvalues and eigenfunctions of E.

A smooth function f,

• $f = \sum_j f_j \phi_j$ is analytic \iff there is a constant C>0 such that for all k>0

$$\sum_{j} \lambda_{j}^{2k} |f_{j}|^{2} \le ((\nu k)!)^{2} C^{2k+2}.$$

• $f = \sum_j f_j \phi_j$ is analytic \iff the sequence $\{A^{\lambda_j^{1/\nu}} f_j\}$ is bounded for some A > 1.

R. T. Seeley. "Eigenfunction expansions of analytic functions". *Proc. Amer. Math. Soc.*, 21: 734-738, 1969.

 $E \in \Psi^{\nu}_{+e}(X)$:a positive elliptic pseudo-differential operators of an integer order ν .

The eigenvalues of E form a sequence $\{\lambda_j\}$ and assume that $0 < \lambda_1 < \lambda_2 <$

 H_j : The corresponding eigenspace for the eigen value λ_j . $d_j := \dim H_j$, $H_0 := \ker E$, $\lambda_0 := 0$, $d_0 := \dim H_0$. $\{e_j^k\}$, $1 \le k \le d_j$, the orthonormal basis of H_j , so $H_j = \operatorname{span}\{e_j^k\}_{k=1}^{d_j}$. $L^2(X) = \bigoplus_{j=0}^{\infty} H_j$.

It can shown that.

 $\sum_{j=1}^{\infty} d_j (1+\lambda_j)^{-q} < \infty$ if and only if $q > \frac{n}{\nu}$.

Fourier Analysis

Fourier Coefficients:

For
$$f \in L^2(X)$$
, $\widehat{f}(j,k) := \left(f,e_j^k\right)_{L^2}$ and
$$\widehat{f}(j) = \begin{pmatrix} \widehat{f}(j,1) \\ \vdots \\ \widehat{f}(j,d_i) \end{pmatrix} \in \mathbb{C}^{d_j}.$$

Plancheral formula:

$$||f||_{L^2(X)} = \sum_{j=0}^{\infty} \sum_{k=1}^{d_j} |\widehat{f}(j,k)|^2 = \sum_{j=0}^{\infty} ||\widehat{f}(j)||_{\mathsf{HS}}^2.$$

Let $\{M_k\}$ be a sequence of positive numbers such that

(M.1)
$$M_0 = 1$$

(M.2)
$$M_{k+1} \le AH^k M_k$$
, for some $A > 0, H \ge 1$ and $k = 0, 1, 2, ...$

(M.3)
$$M_{2k} \leq AH^{2k}M_k^2$$

$$\downarrow$$

(M.3')
$$M_k \le AH^k \min_{0 \le q \le k} M_q M_{k-q}, \quad k = 0, 1, 2, ...$$

(M.4)
$$\sum_{k=1}^{\infty} \frac{M_{k-1}}{M_k} < \infty$$

Ultradifferentiable functions on \mathbb{R}^n

Definition

The space of functions $\psi \in C^{\infty}(\mathbb{R}^n)$ such that for every compact $K \subset \mathbb{R}^n$ there exist h > 0 and a constant C such that

$$\sup_{x \in K} |\partial^{\alpha} \psi(x)| \le C h^{|\alpha|} M_{|\alpha|}.$$

H. Komatsu, "Ultradistributions. I. Structure theorems and a characterization." *J. Fac. Sci. Univ. Tokyo. Sect. IA. Math.*, 20: 25-105, 1973.

Ultradifferentiable functions on X

Komatsu Type Ultradifferentiable Functions:

```
\{M_k\} satisfies (M.1), (M.2), (M.3) and k! \leq C_l l^k M_k, \forall k \in \mathbb{N}_0, for some l, C_l > 0. (Romieu Class), for all l > 0 there is C_l > 0 (Beurling Class).
```

Definition

The Romieu class, $\Gamma_{\{M_k\}}(X)$ (Beurling class, $\Gamma_{(M_k)}(X)$) is the space of C^∞ functions ϕ on X such that there exist (for every) h>0 and C>0 (there exists $C_h>0$) such that we have

$$||E^k \phi||_{L^2(X)} \le Ch^{\nu k} M_{\nu k}, \quad k = 0, 1, 2, ...(Romieu), \quad \nu \in \mathbb{N}.$$

13 / 24

Ultradifferentiable functions on X

Komatsu Type Ultradifferentiable Functions:

```
\{M_k\} satisfies (M.1), (M.2), (M.3) and k! \leq C_l l^k M_k, \forall k \in \mathbb{N}_0, for some l, C_l > 0. (Romieu Class), for all l > 0 there is C_l > 0 (Beurling Class).
```

Definition

The Romieu class, $\Gamma_{\{M_k\}}(X)$ (Beurling class, $\Gamma_{(M_k)}(X)$) is the space of C^∞ functions ϕ on X such that there exist (for every) h>0 and C>0 (there exists $C_h>0$) such that we have

$$||E^k \phi||_{L^2(X)} \le Ch^{\nu k} M_{\nu k}, \quad k = 0, 1, 2, ...(Romieu), \quad \nu \in \mathbb{N}.$$

$$||E^k \phi||_{L^2(X)} \le C_h h^{\nu k} M_{\nu k}, \quad k = 0, 1, 2, ...(Beurling), \quad \nu \in \mathbb{N}.$$

Aparajita Dasgupta 6th March 2018

13 / 24

Results

Results

We have proved the following properties:

- \bullet $\Gamma_{\{M_{\ell}\}}(X)$ is independent of the choice of an operator $E \in \Psi_{e}^{\nu}(X)$.
- $\phi \in \Gamma_{\{M_k\}}(X)$ if and only if there exist h > 0 and C > 0 such that

$$||\partial^{\alpha}\phi||_{L^{2}(X)}\leq Ch^{|\alpha|}M_{|\alpha|},$$

where
$$\partial^{\alpha} = \partial_{j_1}^{\alpha_1} ... \partial_{j_k}^{\alpha_k}$$
, with $1 \leq j_1, ..., j_k \leq N$, $\sum_{j=1}^N \partial_j^2$ is elliptic and $|\alpha| = \alpha_1 + \alpha_2 + ... + \alpha_k$.

3 Assume *X* and *E* are analytic. Then the class $\Gamma_{\{M_k\}}(X)$ is preserved by analytic change of variables, and is well defined in X. Moreover, in every local coordinate chart, it consists of functions locally belonging to the class $\Gamma_{\{M_k\}}(\mathbb{R}^n)$.

Gevrey Spaces

If $M_k=(k!)^s$ for $s\geq 1$ then $\gamma^s(X)=\Gamma_{\{(k!)^s\}}(X)$, that is functions which belong to the Gevrey clases $\gamma^s(\mathbb{R}^n)$ in local coordinate charts, which means,

$$\phi \in \gamma^s(\mathbb{R}^n) \Rightarrow \exists A > 0, C > 0 \text{ such that } \forall \alpha,$$

$$|\partial^{\alpha}\phi(x)| \le CA^{|\alpha|}(\alpha!)^{s}.$$

For s = 1 it will be the space of analytic functions.

Associated function:

$$M(r):=\sup_{k\in\mathbb{N}}\lograc{r^{
u k}}{M_{
u k}},\ \ r>0,\ ext{and set}\ M(0)=0$$

For Gevrey Class, $M(r) \approx r^{1/s}$, that is, $\frac{s}{4\nu e} r^{1/s} \leq M(r) \leq s r^{1/s}$.

4 L P 4 W P 4 E P

15 / 24

Theorem

 $\phi \in \Gamma_{\{M_k\}}(X)$ if and only if there exist constants C>0, L>0 such that

$$||\widehat{\phi}(l)||_{\mathit{HS}} \leq C \exp\{-M(L\lambda_l^{1/\nu})\}, \quad \textit{for all } l \geq 1,$$

where
$$M(r) = \sup_{k \in \mathbb{N}} \log \frac{r^{\nu k}}{M_{\nu k}}$$
.

Theorem

 $\phi \in \Gamma_{\{M_k\}}(X)$ if and only if there exist constants C>0, L>0 such that

$$||\widehat{\phi}(l)||_{\mathit{HS}} \leq C \exp\{-M(L\lambda_l^{1/\nu})\}, \quad \textit{for all } l \geq 1,$$

where
$$M(r) = \sup_{k \in \mathbb{N}} \log \frac{r^{\nu k}}{M_{\nu k}}$$
.

Corollary

Let X and E be analytic and let $s \ge 1$. Then $\phi \in \gamma^s(X)$ if and only if there exists constants C > 0, L > 0 such that

$$||\widehat{\phi}(l)||_{HS} \leq C \exp(-L\lambda_l^{1/s\nu}), \text{ for all } l \geq 1.$$

In particular, for s=1, we recover the characterisation of analytic functions by Seeley.

Aparajita Dasgupta 6th March 2018

16 / 24

Ultradistributions

Definition

The space $\Gamma'_{\{M_k\}}(X)$ is the set of all linear forms u on $\Gamma_{\{M_k\}}(X)$ such that for every $\epsilon>0$ there exists $C_\epsilon>0$ such that

$$|u(\phi)| \le C_{\epsilon} \sup_{\alpha} \epsilon^{|\alpha|} M_{\nu|\alpha|}^{-1} \sup_{x \in X} |E^{|\alpha|} \phi(x)|$$

holds for all $\phi \in \Gamma_{\{M_k\}}(X)$.

Theorem

 $u \in \Gamma'_{\{M_k\}}(x)$ if and only if for every L>0 there exists $K=K_L>0$ such that

$$||\widehat{u}(l)||_{\mathcal{HS}} \le K \exp\left(M(L\lambda_l^{1/\nu})\right)$$

holds for all $l \in \mathbb{N}$.

Here the Fourier coefficients of $u \in \Gamma'_{\{M_k\}}(x)$ are defined by

$$\widehat{u}(e_l^k) := u(\bar{e_l^k}) \text{ and } \widehat{u}(l) := \widehat{u}(e_l) := \left[u(\bar{e_l^k})\right]_{k=1}^{d_l}.$$

Results

α -duals

Definition

The α -dual of the space $\Gamma_{\{M_k\}}(X)$ of ultradifferentiable functions, denoted by $[\Gamma_{\{M_k\}}(X)]^{\wedge}$, is defined as

$$\left\{v=(v_l)_{l\in\mathbb{N}_0}: \sum_{l=0}^{\infty}\sum_{j=1}^{d_l}|(v_l)_j||\widehat{\phi}(l,j)|<\infty, v_l\in\mathbb{C}^{d_l}, \text{ for all }\phi\in\Gamma_{\{M_k\}}(X)\right\}.$$

G. Köthe, "Topological vector spaces. I." Band 159. Springer-Verlag New York Inc., New York, 1969.

Theorem

The following statements are equivalent:

- 2 for every L > 0 we have

$$\sum_{l=1}^{\infty} \exp\left(-M(L\lambda_l^{1/\nu})\right) ||v_l||_{HS} < \infty;$$

1 for every L > 0 there exists $K = K_L > 0$ such that

$$||v_l||_{\mathcal{HS}} \leq K \exp\left(M(L\lambda_l^{1/
u})
ight), \ \ orall l \in \mathbb{N}.$$

Theorem

The following statements are equivalent:

- 2 for every L > 0 we have

$$\sum_{l=1}^{\infty} \exp\left(-M(L\lambda_l^{1/\nu})\right) ||v_l||_{\mathcal{HS}} < \infty;$$

of for every L > 0 there exists $K = K_L > 0$ such that

$$||v_l||_{\mathcal{HS}} \leq K \exp\left(M(L\lambda_l^{1/
u})
ight), \ \ orall l \in \mathbb{N}.$$

Theorem

$$v \in \Gamma'_{\{M_k\}}(x)$$
 if and only if $v \in [\Gamma_{\{M_k\}}(X)]^{\wedge}$.

Beurling Class

Theorem

 $\phi \in \Gamma_{(M_k)}(X)$ if and only if for every L>0 there exists $C_L>0$ such that

$$||\widehat{\phi}(l)||_{\mathcal{HS}} \leq C_L \exp\{-M(L\lambda_l^{1/\nu})\}, \ \ \textit{for all } l \geq 1.$$

For the dual space and for the α -dual, the following statements are equivalent:

- $v \in \Gamma_{(M_{\nu})}(X)'$
- $v \in [\Gamma_{(M_k)}(X)]^{\wedge}$
- \bullet there exists L > 0 such that we have

$$\sum_{l=0}^{\infty} \exp\left(-M(L\lambda_l^{1/\nu})\right) ||\nu_l||_{\mathcal{HS}} < \infty$$

Continued...

Theorem

4 there exists L > 0 and K > 0 such that

$$||v_l||_{\mathcal{HS}} \leq K \exp\left(M(L\lambda_l^{1/\nu})\right)$$

holds for all $l \in \mathbb{N}_0$.

A. Dasgupta and M. Ruzhansky, "Eigenfunction expansions of ultradifferentiable functions and ultradistributions." *Trans. Amer. Math. Soc.*, 368(12): 8481-8498, 2016.

A. Dasgupta and M. Ruzhansky, "Eigenfunction expansions of ultradifferentiable functions and ultradistributions II- Tensor Representations." *Trans. Amer. Math. Soc.*, accepted.

Reference

- J. Delgado and M. Ruzhansky, "Fourier multipliers, symbols and nuclearity on compact manifolds." to appear in J. Anal Math.
- ② T. Gramchev, S. Pilipovic and L. Rodino, "Eigenfunction expansions in \mathbb{R}^n ." *Proc. Amer. Math. Soc.*, 139(12): 4324-4347, 2015.
- M.Ruzhansky, V.Turunen, "Pseudo-Differential Operators and Symmetries", Birkhäuser, Basel, 2010.
- Y. Taguchi, "Fourier coefficients of periodic functions of Gevrey classes and ultradistributions", Yoko-hama Math.J. 35(1987) 51-60.

Aim Fourier Analysi Results

Thank you!

