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SMBHBs with LISA

Supermassive black hole binaries are one of the main science targets for
the space-based interferometer LISA.

Long-lived signals with high SNRs will allow for precise measurements of
various aspects of GW signals, such as spin-induced precession, multiple
ringdown modes measurements, eccentricity, etc.

The high horizon distance in a broad mass range will allow for
supermassive black hole evolution model selection.
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SMBHB signals

[Amaro-Seoane+ (arXiv: 1702.00786)]
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Science targets

[Amaro-Seoane+ (arXiv: 1702.00786)]
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Horizon distance

[Amaro-Seoane+ (arXiv: 1702.00786)]
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Ground-Based Gravitational-Wave Detectors

Fixed armlengths

Fixed geometry

Single laser

Static detector (-ish)
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Space-Based Gravitational-Wave Detectors

[M. Tinto, S. V. Dhurandhar, ”Time-Delay Interferometry“]

Variable armlengths

Variable geometry

Multiple lasers

Moving detector
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Time-Delay Interferometry

The complicated setup requires the development of a new technique to
cancel out the optical noise in the data streams: time-delay interferometry.

By combining laser phase measurements from different spacecrafts at
different times, we can construct combinations of those which cancel out
the optical noise.

These combinations will respond to a passing gravitational wave in a
specific frequency-dependent manner.
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Single Arm Response

The instrument data will consist in a combination of different laser phase
measurements. Therefore, we can write the instrument response to a
passing gravitational wave as the acquired phase during a photon’s travel
from one spacecraft to the next.

∆φk =

∫
path

ω`dt, (1)

or, equivalently, the optical path length is

Lk =
∆φk
ω`

=

∫
path

dt. (2)
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Single Arm Response

Assuming a gravitational wave travelling in the z direction, the spacetime
through which the photon travels can be described by the metric

ds2 = −dt2 + dx2 + dy2 + dz2 + hab(t, z)dxadxb, (3)

= −dudv + dx2 + dy2 + hab(u)dxadxb, (4)

with retarded time u = t − z , and advanced time v = t + z .
The photon travelling along a null geodesic, we have

dt2 = dx2 + dy2 + dz2 + habdx
adxb. (5)
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Single Arm Response

Assuming that the photon is emitted from one spacecraft with coordinates
xα(0) and received at another with coordinates xα(1), we can parametrize
the photon path with affine parameter λ as

xα(λ) = xα(0) + λrα, (6)

rα = xα(1)− xα(0). (7)

We then get along the photon path

dt = dλ
√

ẋ2 + ẏ2 + ż2 + hab(λ)ẋaẋb (8)

= dλL0

√
1 + hab(λ)r̂a r̂b. (9)
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Single Arm Response

The optical path length is

Lk =

∫
path

dt (10)

= L0

∫ 1

0
dλ

[
1 +

1

2
hab(λ)r̂a r̂b

]
. (11)
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Single Arm Response

Using the retarded time u = t − z , we get

Lk = L0 +
L0

2

∫ 1

0
dλ hab(λ)r̂a r̂b (12)

= L0 +
1

2

r̂a r̂b

1− ẑ · r̂

∫ ur

ur−∆u
du hab(u), (13)

when the gravitational wave travels along the ẑ direction.
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Single Arm Response

If we define the Fourier transform of our signal

h̃ab(f ) =

∫
du hab(u)e2πifu, (14)

we can rewrite the response as

∆Lij
L0

=

∫
df

1

2
r̂a r̂bh̃ab(f )T (f , ẑ)e−2πifur , (15)

with transfer function

T (f , ẑ) = sinc [πfL0 (1− ẑ · r̂)] e iπfL0(1−ẑ ·r̂). (16)
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Single Arm Response

In particular, if we assume that the gravitational wave is monochromatic,

hab(u) = A+e
+
ab cos(2πf0u) + A×e

×
ab sin(2πf0u), (17)

the response becomes

∆Lij(ur )

L0
=

1

2
<
[
T (f0, ẑ , ur )r̂a(ur )r̂b(ur )(A+e

+
ab − iA×e

×
ab)e−2iπf0ur

]
.

(18)
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LISA orbits

The spacecraft are placed in inclined eccentric orbits such that they form a
configuration that stays as close to an equilateral triangle as possible as
they orbit the Sun.

This is made possible by choosing

ι =
√

3e, (19)

e =
L0

2
√

3R
, (20)

and placing the perihelia equally spaced around the barycenter’s orbit.
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LISA orbits

[Amaro-Seoane+ (arXiv: 1702.00786)]
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Triangle Configuration
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Armlengths

We can express the armlenths as a function of time by expanding the
Keplerian orbits in powers of e ∼ 0.005 and the velocities ωR ∼ 10−4.

Lj(t) = L0 +
∑
m,n

em(ωR)nL
(m,n)
j (t). (21)

At leading order, the armlengths are constant and equal.

The leading order correction corresponds to constant, unequal armlengths.

Taking into account the spacecraft velocities will lead to variable, unequal
armlengths.
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Single Arm TDI Variables

The LISA data will consist in six single-arm variables containing the GW
signal. We can express them as yijk(t), where i corresponds to the
spacecraft where the signal originates, k to the spacecraft where it is
measured, and j to the arm along which the signal propagates.

The optical noise contained in the yijk ’s depend on three noise functions
φi , as

N l[yijk(t)] = φi [t − Lj(t)]− φk(t). (22)
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Single Round-trip TDI Variables

Assuming that the armlengths are constant and equal, we can define a
time-delay operator as

Dx = x(t − L). (23)

One can build a linear combination of time delayed single-arm
measurement, in such a way that it corresponds to the difference between
a round trip along two arms.

MX =
1

2
(y231 + Dy13′2 − y32′1 − Dy123) . (24)

We can check that the noise in MX cancels with the equilateral triangle
assumption.

We can then build two similar TDI combinations MY and MZ by
permutation of the indices.
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First Generation TDI Variables

Relaxing the assumption that the armlengths are equal, we can define a
time-delay operator as

Dix ≡ x,i = x(t − Li ). (25)

First generation TDI variables are constructed by assuming that the
constellation is static on timescales comparable to a light travel around it.
This results in the approximations that the armlengths are equal in both
directions (L′i = Li ), and that time-delay operators commute (x,ij = x,ji ).
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First Generation TDI Variables

One can build a TDI combination so that the noise cancels, in such a way
that it corresponds to the difference between two Michelson-like
interferometers.

X = y231 + y13′2,3 + y32′1,3′3 + y123,2′3′3

− y32′1 − y123,2′ − y231,22′ − y13′2,322′ . (26)

We can check again that the noise in X cancels with the first generation
TDI assumptions.

We can then build two similar TDI combinations Y and Z by permutation
of the indices.
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Second Generation TDI Variables

The first generation TDI variables are very useful to simulate data from a
detector. However, in the real instrument those will not cancel the optical
noise enough. In order to improve upon them, we need to relax our static
constellation assumption.

We define a non-commutative time-delay operator as

Dix ≡ x;i = x [t − Li (t)], (27)

Dj(Dix) = x;ij = x{t − Lj(t)− Li [t − Lj(t)]}. (28)
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Second Generation TDI Variables

Relaxing our static detector assumption, one can no longer build a TDI
combination so that the noise exactly cancels. However, by constructing a
combination as

X1 = y231 + y13′2;3 + y32′1;3′3 + y123;2′3′3

+ y32′1;22′3′3 + y123;2′22′3′3 + y231;22′22′3′3 + y13′2;322′22′3′3

− y32′1 − y123;2′ − y231;22′ − y13′2;322′

− y231;3′322′ − y13′2;33′322′ − y32′1;3′33′322′ − y123;2′3′33′322′ . (29)

One can check that the noise in X1 again reduces to a commutator

N[X1] = [D3D3′D2′D2,D2′D2D3D3′ ]φ1. (30)

We can build two similar TDI combinations X2 and X3 by permutation of
the indices.
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Long wavelength approximation

SMBHB signals will occur at the lower end of the frequency band.
Therefore, it is sensible to derive the GW response in the low frequency
limit.

Assuming that the metric perturbation is constant along the path of the
light beam, we can write

h(y231) =
∆L3

L0
(31)

=
1

2L0

L̂a3L̂
b
3

1− k̂ · L̂3

∫ u

u−∆u
hab(u′)du′ (32)

=
1

2
hab(u)L̂a3L̂

b
3. (33)
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Long wavelength approximation

Therefore, the GW response in the single round-trip variable MX can be
computed with

MX =
1

2
(y231 + Dy13′2 − y32′1 − Dy123) , (34)

h(MX ) =
1

2
hab(t)

(
L̂a3L̂

b
3 − L̂a2L̂

b
2

)
. (35)
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Long wavelength approximation

We can compute the response in MX , MY , and MZ by expressing the
geometrical factors of the metric perturbation in a frame tied to the
detector.

Assuming that the detector lies in the x̂-ŷ plane, we can construct the
triad (k̂ , p̂, q̂)

k̂ = −(sin θ cosφ, sin θ sinφ, cos θ), (36)

p̂ = (cos θ cosφ, cos θ sinφ,− sin θ), (37)

q̂ = (sinφ,− cosφ, 0). (38)
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Long wavelength approximation

The metric perturbation becomes

hab(t) = h+(t)e+
ab + h×(t)e×ab, (39)

e+
ab = ε+

ab cos 2ψ − ε×ab sin 2ψ, (40)

e×ab = ε+
ab sin 2ψ + ε×ab cos 2ψ, (41)

ε+
ab = p̂ap̂b − q̂aq̂b, (42)

ε×ab = p̂aq̂b + q̂ap̂b. (43)

Antoine Klein (Birmingham) SMBHBs with LISA Bangalore ’19 28 / 87



Long wavelength approximation

Assuming that the bisector of the x̂-ŷ angle coincides with the bisector of
the opening angle between arms L2 and L3′ , we can consider the three
linear combinations of MX , MY , and MZ

MI = MX , (44)

MII =
1√
3

(MZ −MY ) , (45)

MIII =
1

3
(MX + MY + MZ ) . (46)

Antoine Klein (Birmingham) SMBHBs with LISA Bangalore ’19 29 / 87



Long wavelength approximation

The GW responses in those data channels will be

h(MI ,II ) = F+
I ,II (θ, φ, ψ)h+(t) + F×I ,II (θ, φ, ψ)h×(t), (47)

h(MIII ) = 0, (48)

F+
I (θ, φ, ψ) =

√
3

2

[
1

2

(
1 + cos2 θ

)
cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ

]
,

(49)

F×I ,II (θ, φ, ψ) = F+
I ,II (θ, φ, ψ − π/4), (50)

F+,×
II (θ, φ, ψ) = F+,×

I (θ, φ− π/4, ψ). (51)

(52)
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Long wavelength approximation

Thus, we see that in the long wavelength approximation, LISA is
equivalent to two colocated detectors, rotated by π/4 with respect to each
other, with a response suppressed by a factor

√
3/2 due to the opening

angle between the arms.

It is worth noting that this description is valid in a frame tied to the
detector, which significantly changes orientation during the observation of
a signal.
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Instrument setup

[M. Tinto, S. V. Dhurandhar, ”Time-Delay Interferometry“]
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Noise in single-arm variables

The noise in each single-arm variable will be dependent on three main
sources:

A component independent in each single-arm variable, dominated by
laser shot noise.

A component independent for each of the three arms, proportional to
the displacement noise of the test masses.

The laser phase noise, reduced by time-delay interferometry.
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Noise in single-arm variables

We model the noise in yijk by

N[yijk(t)] = ns
j (t) + L̂j · na

j (t)− L̂j · na
j ′(t − Lj) + nl

k(t)− nl
i (t − Lj).

(53)

We assume each noise component is Gaussian with PSD〈
ñl
j(f )ñl

k(f ′)∗
〉

= S l
n(f )δjkδ(f − f ′), (54)〈

ñs
j (f )ñs

k(f ′)∗
〉

= S s
n(f )δjkδ(f − f ′), (55)〈

ña,m
j (f )ña,n

k (f ′)∗
〉

= Sa
n(f )δjkδmnδ(f − f ′). (56)
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Noise in the single round-trip variables

The single round-trip TDI variables can be written as

MX =
1

2
(y231 + Dy13′2 − y32′1 − Dy123) , (57)

and its shot noise component will be

Ns[MX ] =
1

2
(ns

3 + Dns
3′ − ns

2′ − Dns
2) . (58)
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Noise in the single round-trip variables

We can compute the PSD of the shot noise component in MX

S s,MX
n (f ) =

∫ 〈
Ns[M̃X (f )]Ns[M̃X (f ′)]∗

〉
df ′ (59)

=
1

4

∫ 〈(
ñs

3 + e2πifLñs
3′ − ñs

2′ − e2πifLñs
2

)
× (c .c .)

〉
df ′,

(60)

= S s
n(f ). (61)
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Noise in the single round-trip variables

Similarly, we can compute the correlation between the noise in MX and
MY .

S s,MXMY
n (f ) =

∫ 〈
Ns[M̃X (f )]Ns[M̃Y (f ′)]∗

〉
df ′ (62)

=
1

4

∫ 〈(
ñs

3 + e2πifLñs
3′ − ñs

2′ − e2πifLñs
2

)
×
(
ñs ∗

1 + e−2πif ′Lñs ∗
1′ − ñs ∗

3′ − e−2πif ′Lñs ∗
3

)〉
df ′, (63)

= −1

4

∫ [
e−2πif ′L 〈ñs

3ñ
s ∗
3 〉+ e2πifL 〈ñs

3′ ñ
s ∗
3′ 〉
]
df ′, (64)

= −1

2
cos(2πfL)S s

n(f ). (65)
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Noise in the single round-trip variables

We can compute the acceleration noise in MX .

Na[MX ] =
1

2

[
L̂3 · (na

3 − Dna
3′) + L̂3′ ·

(
Dna

3′ − D2na
3

)
− L̂2′ · (na

2′ − Dna
2)− L̂2 ·

(
Dna

2 − D2na
2′
) ]

(66)

=
1

2
L̂3 ·

(
na

3 + D2na
3

)
+

1

2
L̂2 ·

(
na

2′ + D2na
2′
)

− L̂3 · Dna
3′ − L̂2 · Dna

2. (67)
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Noise in the single round-trip variables

Thus, the acceleration noise PSD in MX will be

Sa,MX
n (f ) =

∫ 〈
Na[M̃X (f )]Na[M̃X (f ′)]∗

〉
df ′ (68)

= Sa
n(f )

[
1

4

(
|L̂3|2 + |L̂2|2

)(
1 + e4πifL

)(
1 + e−4πifL

)
+
(
|L̂3|2 + |L̂2|2

)]
(69)

= Sa
n(f )

[
2 cos2(2πfL) + 2

]
. (70)
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Noise in the single round-trip variables

Finally, we can compute the acceleration noise correlation between MX

and MY . We have

Na[MX ] =
1

2
L̂3 ·

(
na

3 + D2na
3

)
+

1

2
L̂2 ·

(
na

2′ + D2na
2′
)

− L̂3 · Dna
3′ − L̂2 · Dna

2, (71)

Na[MY ] =
1

2
L̂1 ·

(
na

1 + D2na
1

)
+

1

2
L̂3 ·

(
na

3′ + D2na
3′
)

− L̂1 · Dna
1′ − L̂3 · Dna

3. (72)
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Noise in the single round-trip variables

Thus, the acceleration noise correlation between MX and MY will be

Sa,MXMY
n (f ) =

∫ 〈
Na[M̃X (f )]Na[M̃Y (f ′)]∗

〉
df ′ (73)

= −1

2
Sa
n(f )

[
|L̂3|2

(
1 + e4πifL

)
e−2πifL

+ |L̂3|2
(

1 + e−4πifL
)
e2πifL

]
(74)

= −2Sa
n(f ) cos(2πfL). (75)
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Uncorrelated channels

The noise in the channels that we have defined so far is correlated. One
way around that is to express a linear combination of those channels and
try to diagonalize the noise correlation matrix. We can write, in the
Fourier domain,

η = a1M̃X + a2M̃Y + a3M̃Z . (76)
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Uncorrelated channels

The SNR in η is

ρ2
η = 4

∫ ∞
0

|h̃η(f )|2
Sηn (f )

df (77)

= 4

∫ ∞
0

(a1h̃MX
, a2h̃MY

, a3h̃MZ
)C−1(a1h̃MX

, a2h̃MY
, a3h̃MZ

)†df ,

(78)

C =

 SMX
n (f ) SMXMY

n (f ) SMXMZ
n (f )

SMYMX
n (f ) SMY

n (f ) SMYMZ
n (f )

SMZMX
n (f ) SMZMY

n (f ) SMZ
n (f )

 . (79)
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Uncorrelated channels

Due to the symmetries in our setup, the noise PSD in each channel will be
equal, the noise correlation between two channels will be equal, and real.
The noise correlation matrix will thus be of the form

C =

 a b b
b a b
b b a

 . (80)

This matrix having rank 3, we find that a system of TDI variables from
spacecraft in a triangle configuration exchanging laser signals is equivalent
to three detectors with uncorrelated noise.
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Uncorrelated channels

This matrix has one two-dimensional and one one-dimensional eigenspaces.
A basis of eigenvectors can be chosen as

vA =
1√
2

(0,−1, 1), vE =
1√
6

(2,−1,−1), vT =
1√
3

(1, 1, 1),

(81)

corresponding to the noise-uncorrelated TDI combinations

AM =
1√
2

(
M̃Z − M̃Y

)
=

√
3

2
M̃II , (82)

EM =
1√
6

(
2M̃X − M̃Y − M̃Z

)
=

√
3

2

(
M̃I − M̃III

)
, (83)

TM =
1√
3

(
M̃X + M̃Y + M̃Z

)
=
√

3M̃III . (84)

As vA and vE are part of the same eigenspace, the noise PSD in AM and
EM are equal.
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Noise in the uncorrelated channels

The eigenvalues of the noise correlation matrix will give the noise PSD in
the uncorrelated channels AM , EM , and TM . We find

SAM
n (f ) = SEM

n (f ) = SMX
n (f )− SMX ,MY

n (f ) (85)

=
1

2
{[6 + 4 cos(2πfL) + 2 cos(4πfL)]Sa

n(f )

+ [2 + cos(2πfL)]S s
n(f )}, (86)

STM
n (f ) = SMX

n (f ) + 2SMX ,MY
n (f )

= sin2(πfL)
[
4 sin2(πfL)Sa

n(f ) + S s
n(f )

]
. (87)
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Contributions to the SNR

10−4 10−3 10−2 10−1 100

f [Hz]

1027

1030

1033

1036

1039

ρ2

Th2

Total

A

E

T
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Noise in the low-frequency limit

We found two combinations of MX , MY , and MZ that have nonvanishing
GW response and uncorrelated noise in the low-frequency limit, AM and
EM .

Their response is proportional to the response in the low-frequency
channels we constructed, h(AM) ∼ h(M̃II ), h(EM) ∼ h(M̃I ). To compute
the noise PSD to use in those channels, we can simply take the limit

S
MI ,II
n (f ) =

1

3

{[
lim
f→0

6 + 4 cos(2πfL) + 2 cos(4πfL)

]
Sa
n(f )

+

[
lim
f→0

2 + cos(2πfL)

]
S s
n(f )

}
= 4Sa

n(f ) + S s
n(f ). (88)
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Noise in the first generation variables

To estimate the noise in the first generation variables, we can observe that
the dominant contribution can be estimated with the equilateral triangle
approximation. In this case, we find that

X = 2(1− D2)MX , (89)

X̃ = 2
(

1− e4πifL
)
M̃X

= 4ie2πifL sin(2πfL)M̃X . (90)

So, we find that

SX
n (f ) = 16 sin2(2πfL)SMX

n (f ), (91)

and similarly for the correlations. We can thus build similar uncorrelated
noise channels.
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Noise in the second generation variables

In the second generation variables, the same applies, and we find

X1 = (1− D4)X , (92)

X̃1 = 2ie4πifL sin(4πfL)X̃ . (93)

The noise PSDs and correlations will thus satisfy

SX1
n (f ) = 4 sin2(4πfL)SX

n (f ). (94)
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Residual laser phase noise

We can compute the PSD of each noise component in each TDI variable
with different assumptions for the time delays:

Assuming constant equal armlengths

MX =
1

2
(y231 + Dy13′2 − y32′1 − Dy123) . (95)

Assuming different armlengths, ignoring spacecraft velocities

MX =
1

2

(
y231 + y13′2,3 − y32′1 − y123,2′

)
. (96)

Using exact armlengths

MX =
1

2
(y231 + y13′2;3 − y32′1 − y123;2′) . (97)
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Residual laser phase noise

We have the freedom to make different assumptions for the time delays we
use to construct the TDI variables, but the time delays present in the noise
response of the single-arm variables yijk are physical, so we need to use
exact time delays to estimate the residual laser phase noise in those.

In order to compute their effect in the Fourier domain, we recall

Lj(t) = L0 +
∑
m,n

em(ωR)nL
(m,n)
j (t)

= L0 + ∆Lj(t). (98)
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Residual laser phase noise

Since f ∆Lj is small and periodic, we can Taylor expand the following
factor, and then decompose it in a Fourier series

e2πif ∆Lj (t) =
∑
k

(2πif )k

k!
∆Lj(t)k (99)

=
∑
p

Cp,j(f )e2πipnt , (100)
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Residual laser phase noise

We find

F(Djh)(f ) =

∫
h[t − Lj(t)]e2πiftdt (101)

=

∫
h(t)e2πif [t+L0+∆Lj (t)]dt (102)

= e2πifL0

∫
h(t)

∑
p

Cp,j(f )e2πipnte2πiftdt (103)

= e2πifL0
∑
p

Cp,j(f )h̃(f + pn). (104)
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Residual laser phase noise in MX
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Residual laser phase noise in X
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Residual laser phase noise in X1
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Summary of the LISA response

The modelling of the noise response shows that time-delay interferometry
will be able to provide a reduction of the laser phase noise in the LISA
data, provided that we use second-generation TDI variables with exact
time delays.

If this is implemented, the laser phase noise becomes negligible with
respect to the acceleration and shot noises.

At leading order in the spacecraft orbital eccentricity and velocities, the
Fourier domain TDI variables in different generations are multiple of each
other.

For this reason, performing data analysis using either generation TDI
variables is equivalent, provided that the data is devoid of laser phase
noise.
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Inspiral waveform

The GW signal emitted by a binary system can be written as a metric
perturbation depending on two polarizations

hab(t) = h+(t)e+
ab + h×(t)e×ab. (105)

The structure of the polarizations h+(t) and h×(t) can be written as a
series of harmonics of the orbital phase

h+,×(t) =
GMx

Dcc2

∑
n

A
(n)
+,×(t)e−inφ(t) + c .c ., (106)

x =

(
GMω

c3

)2/3

. (107)
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Redshift effect

The GW signal from a binary will be affected by redshift. So, the intrinsic
frequency of the system will not be directly observable. Instead, the signal
will imply a rescaling of the masses as

x =

(
GMωsrc

c3

)2/3

=

(
GMzωobs

c3

)2/3

, (108)

ωobs =
ωsrc

1 + z
, (109)

Mz = (1 + z)M. (110)

This implies that the signal can be expressed as depending on the
luminosity distance instead of the comoving distance

h+,×(t) =
GMzx

DLc2

∑
n

A
(n)
+,×(t)e−inφ(t) + c.c ., (111)

DL = (1 + z)Dc . (112)
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Spin precession

Binaries with misaligned spins will experience orbital precession.
Along the evolution of the system, the orbital plane precesses, inducing a
modulation of the gravitational waveform.
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Eccentricity

Binaries on eccentric orbits will experience periastron precession,
introducing an extra timescale in the problem.

The periastron-to-periastron frequency is close to the orbital frequency,
generating a splitting of the harmonics in the Fourier domain.
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Ringdown

After the merger, a remnant black hole remains, deformed by the merger
process.

It quickly radiates extra energy in gravitational waves, in order to reach a
final state of a Kerr black hole.

The radiation takes the form of a series of damped modes, characterized
by their frequency and damping timescale

h+,×(t) =
∑
`,m,n

A`,m,n+,× e iω`,m,nte−t/τ`,m,n . (113)

The frequencies and damping timescales depend on two parameters: the
mass and the spin of the remnant black hole.
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Detection timescale

The accumulation of the SNR in the instrument will not be accumulated
uniformly. Instead, most of the signal will be observed in the last few
moments.

Antoine Klein (Birmingham) SMBHBs with LISA Bangalore ’19 64 / 87



Astrophysical study

We studied two different black hole seeds scenarios:

Light seeds: popIII remnants, black holes form with initial masses around
200M� between redshifts 15 and 20.

Heavy seeds: black holes are present with masses around 105M� between
redshifts 15 and 20.

Delay between galaxy merger and black hole merger can be important, as
black holes can be driven to the center of the merged galaxy on timescales
of a few Gyrs.

In the light seeds scenario, the impact of the delays does not affect the
SMBHB detections significantly.
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Models

We simulated the merger rate as a function of mass and redshift in three
scenarios: light seeds, heavy seeds without delays, heavy seeds with delays.

[AK+ (arXiv: 1511.05581)]
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Parameter Estimation

We used Fisher matrix analysis to compute measurement errors on the
binary parameters, using spin-precessing inspiral-only circular waveforms
with higher harmonics.

We computed the SNR ratio between IMR phenomC and inspiral-only
waveforms.

We rescaled the measurement errors on extrinsic parameters using results
from data analysis performed on a few spin-precessing IMR hybrid
waveforms.

Most intrinsic parameter measurements are not significantly affected by
the merger and ringdown, whereas the sky location and distance
measurement are.
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Measurement Error Gain

The distance measurement will scale like the SNR ratio, and the sky
location will scale like the square of the SNR ratio.

[AK+ (arXiv: 1511.05581)]
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Detections from astrophysical populations

The number of detections for a five-year mission varies from model to
model. We expect several tens to several hundred.

[AK+ (arXiv: 1511.05581)]
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Mass measurement

For about a third of systems, we will be able to measure the individual
masses with a precision better than 10−2.

[AK+ (arXiv: 1511.05581)]
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Spin measurement

In favourable conditions, the spin of the primary will be able to be
measured at the level of 10−2, and the spin of the secondary at the level of
10−1.

[AK+ (arXiv: 1511.05581)]
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Spin alignment angle

The spin alignment angle will be measurable to within 10 degrees for a
significant fraction of the observations.

[AK+ (arXiv: 1511.05581)]
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Cosmology

A significant fraction of the systems will allow for a sky localization good
enough to identify the host galaxy with contemporary detectors, with 10%
distance measurement accuracy at low redshift, in order to constrain
cosmological parameters.

[AK+ (arXiv: 1511.05581)]
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Early Universe

Depending on the model, a few to a few hundred systems will be correctly
identified at high redshift, allowing to probe SMBH evolution models.

[AK+ (arXiv: 1511.05581)]
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Eccentricity

The physics driving the final merger of a SMBHB resulting from a galaxy
merger will influence the characteristics of the binary signal.

In particular, if gas dynamics cannot drive the merger by themselves, triple
interactions will then drive the final merger, which will tend to increase the
orbital eccentricity of the system.

In particular, if not enough stars are present in the binary’s neighbourhood,
the binary can stall. When another another galaxy merger occurs, a third
SMBH will form a hierachical triplet with the inner binary.
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Eccentricity

Kozai-Lidov oscillations can drive the merger by increasing the orbital
eccentricity.

Triple interactions can also increase the eccentricity of the binary by
ejecting the lighter component of the triple.

[Bonetti+ (arXiv:1709.06088)]
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Eccentricity

[Bonetti+ (arXiv:1709.06088)]
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Ringdown measurement

High SNRs will allow the simultaneous detection of multiple ringdown
modes, allowing Kerrness tests for the remnant objects.

The bucket of the LISA noise curve corresponds to the ringdown
frequencies of Sagittarius A∗-type black holes.
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Ringdown measurement

[Berti+ (arXiv:1605.09286)]
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Axion-like particles

The presence of ultralight bosons such as QCD axions (mb ∼ 10−17 eV -
10−13 eV) will trigger superradiant instabilities in SMBHs.

This happens when particle pairs are created in the ergoregion, one of
which carries negative energy and falls into the black hole. Depending on
the mass of the boson, the mass of the SMBH, and its spin, this process
will enter a resonance and drain significant angular momentum from the
SMBH.

By measuring the spins and masses of binary components, we can detect
holes in the mass-spin plane that would be a signature of the presence of
such bosons.

LISA will allow us to either reject ultralight bosons in a certain mass range,
or if present to detect them and measure their mass with ∼ 10% accuracy.
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Black hole populations

Simulation of a heavy mass seed model in the presence of an ultalight
boson of mass mb = 10−16eV . The shape of the hole in the mass-spin
plane is characteristic of this boson mass.

[Brito+ (arXiv:1706.06311, 1706.05097)]
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Boson mass rejections

Supposing that such particles do not exist, LISA can reject boson masses
in a certain mass range after a few observations.

[Brito+ (arXiv:1706.06311, 1706.05097)]
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Challenges in waveform modelling: Galactic binaries

Due to the quasimonochromatic nature of these sources, these are
fairly simple to model, even when taking into account the full LISA
response.

The effect of the eccentricity on the gravitational waveform has yet to
be studied.

Additional effects can be important: Kozai-Lidov resonances, mass
transfer, etc.

Antoine Klein (Birmingham) SMBHBs with LISA Bangalore ’19 83 / 87



Challenges in waveform modelling: EMRIs

In order to reduce the orbital phasing error along the whole inspiral to
less than a cycle, self-force calculation at second order in the mass
ratio are needed.

The rich structure of the waveform requires the development of new,
efficient algorithms to compute the gravitational waveforms.
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Challenges in waveform modelling: IMRIs

BHB waveforms are efficient for modelling systems with mass ratios
of 1 to 1/50.

EMRI waveforms are efficient for modelling systems with mass ratios
higher than 10−4.

In the intermediate mass ratio regime 10−2 - 10−4, we don’t have
efficient waveforms to perform our analyses.
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Challenges in waveform modelling: Stellar-mass
BHBs

In order to probe binary formation models, the development of
eccentric waveforms is important.

Since these systems are in the early inspiral, post-Newtonian
waveforms are appropriate.

Since these systems are located at the higher end of the frequency
band, the inclusion of the full LISA response is crucial.

The structure of the signal requires the development of very fast
eccentric waveforms.
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Challenges in waveform modelling: SMBHBs

Because we expect high signal-to-noise ratios, highly accurate
waveforms are required.

In particular, the inclusion of multiple ringdown modes, eccentricity,
and spin-precession are all important.

For binary masses M . 105M�, the inclusion of the full LISA response
will be important, in particular the merger and ringdown response.

Very high eccentricities are predicted by some scenarios, which require
a novel way of modelling binary waveforms.

Antoine Klein (Birmingham) SMBHBs with LISA Bangalore ’19 87 / 87


	Overview
	LISA Instrument Response Modelling
	LISA Noise Response Modelling
	SMBHB Measurements
	Fundamental Physics Applications

