Properties of Spectrum for Anderson type random operator

Anish Mallick

ICTS-TIFR Bengaluru

November 14, 2018

- Introduction
- 2 Multiplicity bounds of spectrum
- 3 Anderson type operators on Cayley like graphs
- 4 Local Eigenvalue Statistics and regularity of DOS
- 5 Future directions
- 6 References

Anderson type operator

- The model was introduced to study spin wave propagation over doped semi-conductors.
- Anderson developed it to show that random medium causes the eigenfunctions to decay exponentially. This phenomenon is now known as Anderson localization.
- The continuous version of the Anderson Hamiltonian is given by

$$H^{\omega} = -\sum_{i=1}^{d} \frac{\partial^2}{\partial x_i^2} + \sum_{n \in \mathbb{Z}^d} \omega_n \chi_{n+[0,1)^d}$$

on $L^2(\mathbb{R}^d)$.

There are basically three type of questions

- Spectrum of the operator (including behavior of density of states).
- Local structure of spectrum (behavior of gaps between eigenvalue).
- Multiplicity of spectrum.

Anderson type operator

Anderson tight binding model/Random Schrödinger operator

- For ergodic case, the spectrum is almost surely constant and there are regularity results for density of states.
- Recently there is some results on local spectral statistics in region of Anderson localization, which in turn provides answer for multiplicity.

Anderson type operator

- There are many intermediate models like dimer/polymer models which falls between Anderson tight binding model and random Schrödinger operator.
- For the ergodic case, many results involving density of state can be extended from theory of Anderson tight binding model to these cases.
- The questions of spectral statistics and multiplicity are being studied.

Multiplicity bounds of singular spectrum for certain Random operators

Multiplicity bounds of spectrum

Family of operator

The family of random operator A^{ω} is of the form

$$A^{\omega} = A + \sum_{n} \omega_n C_n,$$

where A is essentially self adjoint operator and $\{C_n\}_n$ are finite rank non-negative operators. Here $\{\omega_n\}_n$ are independent real random variables with absolutely continuous distribution.

Example

On $\ell^2(\mathbb{Z})$ consider the operator $\Delta + V^\omega$, where Δ is Laplacian and $(V^\omega u)(n) = \omega_{\lfloor \frac{n}{N} \rfloor} u(n) \qquad \forall n \in \mathbb{Z}.$

This example can be generalized to \mathbb{Z}^d case.

Multiplicity bounds of spectrum

Main results of [AM, D. R. Dolai, arXiv:1709.01774]¹

Under the assumption that A^{ω} is almost surely essentially self adjoint operator.

The multiplicity of singular spectrum is bounded above by maximum multiplicity of eigenvalues of $\sqrt{C_n}(A^\omega-z)^{-1}\sqrt{C_n}$ for almost all (ω,z) .

As an expression, it is given by

$$\sup_n \operatorname{ess-sup} Mult_n^{\omega}(z),$$

where

 $Mult_n^\omega(z):=$ Maximum multiplicity of roots of polynomial

$$\det(\sqrt{C_n}(A^{\omega}-z)^{-1}\sqrt{C_n}-xI)$$
 in x .

It can be shown that $Mult_n^{\omega}(z)$ is constant for almost all ω .

 $^{^1}$ Multiplicity theorem of singular Spectrum for general Anderson type Hamiltonian \circ \circ \circ

Multiplicity bounds of spectrum

Main results of [AM, M. Krishna, arXiv:1803.06895]²

- When C_n are finite rank projection satisfying $\sum_n C_n = I$ and $\{\omega_n\}_n$ are independent real random variables following an absolutely continuous distribution with full support.
- Let J be an interval in the region where <u>Simon-Wolff criteria</u> is satisfied, such that the multiplicity of eigenvalues of A^{ω} in J is bounded below by K almost surely.

Then, the multiplicity of spectrum, in the region where $\underline{\text{Simon-Wolff criteria}}$ is satisfied, is bounded below by K.

Simon-Wolff criteria

Is the region where only pure-point spectrum exists

$$\bigcap_{n} \left\{ E \in \mathbb{R} : \lim_{\epsilon \downarrow 0} \left\| (A^{\omega} - E - \iota \epsilon)^{-1} C_{n} \right\| < \infty \quad a.s. \right\}$$

²Global multiplicity bounds and Spectral Statistics Random Operators

Example

On
$$\ell^2(\mathbb{Z} \times \{1, \cdots, 5\})$$
 consider the operator $H^\omega = \tilde{\Delta} + \sum \omega_n P_n,$

where

$$(\tilde{\Delta}u)(x,n) = \lceil \frac{n}{3} \rceil (u(x+1,n) + u(x-1,n)),$$

and ω_n are i.i.d real random variables with absolutely continuous distribution. The projection is given by $(P_n u)(x,m) = \begin{cases} u(x,m) & x=n, \\ 0 & o.w \end{cases}$.

Observe that H^ω restricted to $\ell^2(\mathbb{Z} \times \{1\})$, $\ell^2(\mathbb{Z} \times \{2\})$ and $\ell^2(\mathbb{Z} \times \{3\})$ are unitarily equivalent. Similarly $\ell^2(\mathbb{Z} \times \{4\})$ and $\ell^2(\mathbb{Z} \times \{5\})$ are unitarily equivalent.

- First result will imply that the maximum multiplicity is bounded by three.
- And second result will imply that lower bound of multiplicity is two.

Technical details (Assuming C_n are projections)

- Setting $\mathscr{H}_n^\omega = \{f(A^\omega)\phi: f \in C_c(\mathbb{R}), \phi \in C_n\mathscr{H}\}$ we have $(A^\omega, \mathscr{H}_n^\omega) \cong (M_{Id}, L^2(\mathbb{R}, \Sigma_n^\omega, \mathbb{C}^{rank(C_n)})),$ where Σ_n^ω is matrix valued measure which satisfies $\int \frac{1}{x-z} \Sigma^\omega(dx) = C_n(A^\omega z)^{-1} C_n.$
- Writing $d\Sigma_n^\omega(E)=W_n^\omega(E)d\sigma_n^\omega(E)$ where $\sigma_n^\omega=tr(\Sigma_n^\omega)$, Poltoratskii's theorem gives $W_n^\omega(E)=\lim_{\epsilon\downarrow 0} \frac{1}{tr(C_n(A^\omega-E-\iota\epsilon)^{-1}C_n)}C_n(A^\omega-E-\iota\epsilon)^{-1}C_n,$

for almost all E w.r.t $\sigma_{n,sing}^{\omega}$.

- For E in support of $\sigma_{n,sing}^{\omega}$, we have $tr(C_n(A^{\omega}-E-\iota\epsilon)^{-1}C_n)\to\infty$ as ϵ goes to zero.
- If $\mathscr{H}_n^\omega\cap\mathscr{H}_m^\omega=\{0\}$, then $\sigma_{n,sing}^\omega$ and $\sigma_{m,sing}^\omega$ are singular.

Technical details (Assuming C_n are projections)

To establish multiplicity of $W_n^{\omega}(E)$ for almost all E, it is enough to study the case $A_{\lambda} = A + \lambda C_n$. This is done as:

- Let $G_{\lambda}(z) = C_n(A_{\lambda} z)^{-1}C_n$, then using resolvent equation $G_{\lambda}(z) = G_0(z)(I + \lambda G_0(z))^{-1} = (G_0(z)^{-1} + \lambda I)^{-1}$
- A consequence of Poltoratskii's theorem is $supp(\sigma_{\lambda,sinq}) = \{E : \det(I + \lambda G_0(E + \iota 0)) = 0\}$
- So multiplicity of $G_0(E+\iota 0)$ for almost all E provides the required answer.
- Viewing $\det(I+\lambda G_0(z))$ as polynomial of λ , we need to find the multiplicity roots as function of z. This can be re-stated as a polynomial being non-zero.

Definition [AM, P. A. Narayanan arXiv:1808.05820]⁴

Given a finitely generated group G with generators g_1, \dots, g_n and a sequence of vertices $v_{\pm 1}, v_{\pm 2}, \dots, v_{\pm n}$ from a finite undirected graph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$, define the infinite graph $\mathcal{H}_G = (\mathcal{V}_G, \mathcal{E}_G)$ by

- $\mathcal{V}_G = \mathcal{V} \times G = \{(v,g) : v \in \mathcal{V}, g \in G\},\$
- The edge set \mathcal{E}_G) is union of $\{\{(v,g),(w,g)\}: \{v,w\} \in \mathcal{E}, g \in G\}$ and $\{\{(v_{-i},g),(v_i,gg_i)\}: g \in G, 1 \leq i \leq n\}.$

⁴On multiplicity of spectrum for Anderson type operators with higher rank perturbations

On $\ell^2(\mathcal{V}_G)$ let Δ denote the adjacency operator. Define the Anderson operator as $H^\omega=\Delta+\sum_{g\in G}\omega_gP_g$, where P_g is the projection onto

 $\ell^2(\mathcal{V} \times \{g\})$ and $\{\omega_g\}_g$ are i.i.d random variables.

Viewing ω_g as projection from $(\Omega, \mathcal{B}, \mathbb{P}) = (\mathbb{R}^G, \otimes_G \mathcal{B}_{\mathbb{R}}, \otimes_G \mu)$ to \mathbb{R} , for any $h \in G$ define $\theta_h : \Omega \to \Omega$ by $(\theta_h \omega)_g = \omega_{gh}$. Then observe that $H^{\theta_h \omega} = U_h H^{\omega} U_h^*$,

where for any automorphism ϕ of \mathcal{H}_G define the unitary operator U_ϕ on $\ell^2(\mathcal{V}_G)$ by

$$(U_{\phi}u)((v,g)) = u(\phi(v,g)),$$

so the operator H^{ω} is ergodic.

special Unitaries preserving H^{ω}

$$Aut_{And}(\mathcal{H}_G) = \{ \phi \in Aut(\mathcal{H}_G) : H^{\omega} = U_{\phi}H^{\omega}U_{\phi}^* \ a.s. \}$$

Theorem

The group homomorphism

$$\Theta: \prod_{g \in G} Aut(\mathcal{H}|\{v_{\pm i}\}_{i=1}^n) \to Aut_{And}(\mathcal{H}_G)$$

defined by $\Theta((\phi_g)_g)((v,h)) = (\phi_h(v),h)$, for $(v,h) \in \mathcal{V}_G$, is ismorphism.

Here

$$Aut(\mathcal{H}|\{v_{\pm i}\}_{i=1}^n) := \{\phi \in Aut(\mathcal{H}) : \phi(v_{\pm i}) = v_{\pm i} \ 1 \le i \le n\}.$$

So if $Aut(\mathcal{H}|\{v_{\pm i}\}_{i=1}^n)$ is trivial, then $Aut_{And}(\mathcal{H}_G)$ is also trivial.

Observe that the zero eigenvalue for Laplacian over \mathcal{H} has non-trivial multiplicity. But by construction of the graph $Aut(\mathcal{H}|\{x_1,x_2\})=\{1\}.$

Another important observation is that, there is multiple eigenvectors corresponding to zero eigenvalue of Laplacian which is zero at x_1 and x_2 .

If we construct $\mathcal{H}_{\mathbb{Z}^2}$ for the group \mathbb{Z}^2 and define the Anderson operator described as above, then the random operator H^ω has non-trivial multiplicity. By construction of the graph, $Aut_{And}(\mathcal{H}_{\mathbb{Z}^2})$ is trivial, so automorphisms of underlying space is not contributing to any multiplicity of the operator.

Local Eigenvalue Statistics and regularity of DOS

Local Eigenvalue Statistics and regularity of DOS

Model in [AM, D.R. Dolai, arXiv:1506.07132]³

On the Hilbert space $\ell^2(\mathbb{Z}^d)$ consider the operator

$$(H^{\omega}u)(n) = \sum_{\|n-m\|_1 = 1} (u(n) - u(m)) + (1 + \|n\|_2^{\alpha})\omega_n u(n) \quad n \in \mathbb{Z}^d,$$

where $\{\omega_n\}_n$ are i.i.d random variables following uniform distribution in [0, 1].

It was shown by Gordon-Jakšić-Mochanov-Simon that

- \bullet $\sigma_{ess}(H^{\omega}) = [a_k, \infty).$
- For $E \in (a_j, a_{j-1})$ for $j \leq k$ the limit

$$N_j(E) = \lim_{L \to \infty} \frac{1}{L^{d-j\alpha}} \# \{ E_n \in \sigma(H_L^\omega) : E_n < E \}$$

exists and is non-zero almost surely, where H_L^ω is restriction of H^ω in $\{-L,\cdots,L\}^d$.

³Spectral statistics of random Schrödinger operator with growing potential.

Smoothness property of N_1

Result [AM, D.R. Dolai, arXiv:1506.07132]

For E > 2d we have $N_1(E) = C_{d,\alpha}(E - 2d)$.

For
$$\Lambda_{L,m_L}:=\{-L,\cdots,L\}^d\setminus\{-m_L,\cdots,m_L\}^d$$
 define H_{L,m_L}^ω . The function

$$G_L(z) = \frac{1}{L^d} \mathbb{E} \left[Tr \left((H_{L,m_L}^{\omega} - z)^{-1} \right) \right]$$

has analytic continuation for any compact subset of $\{z: Rez > 2d^2\}$ for large enough L.

Random walk expansion

$$\langle \delta_0, (H^{\omega} - z)^{-1} \delta_0 \rangle = \sum_{k=0}^{\infty} \sum_{\gamma \in \Gamma_L^k(0,0)} \prod_{i=0}^k \frac{1}{(1 + ||\gamma_i||_2^{\alpha})\omega_{\gamma_i} + 2d - z}$$

where $\Gamma_L^k(0,0)$ is set of path starting and ending at 0 of length k.

Local Statistics for unfolded eigenvalues

Result [AM, D.R. Dolai, arXiv:1506.07132]

The point process $\Lambda_L^{\omega,t}(f)=Tr(f(L^{d-j\alpha}(N_j(H_L^\omega)-t)))$ for $f\in C_c(\mathbb{R})$ converges to Poisson point process.

The set Λ_{L,m_L} can be divided into $\{\Lambda_{l_L}(p)\}_p$, such that for most eigenvalues of H^ω_{L,m_L} there is a unique p where some eigenvalue $H^\omega_{\Lambda_{l_L}(p)}$ is exponentially close.

So we can re-define the point process with respect to smaller boxes.

$$\Lambda_{L,p}^{\omega,t}(f) = Tr(f(L^{d-j\alpha}(N_j(H_{\Lambda_{l_L}(p)}^{\omega}) - t))).$$

These point processes are independent.

Rest of the work is to show that the point process $\sum_p \Lambda_{L,p}^{\omega,t}$ converges to Poisson point process.

Current problems and future directions

Current Problems (in progress)

Regularity properties of density of state

- Joint work with Prof. Manjunath: To show that the density of states measure for random Toeplitz/Hankel matrix is absolutely continuous. In case of Toeplitz matrix, the density of states measure is C^{∞} .
- Joint work with D.R. Dolai and Prof. M. Krishna: To show that the density of state measure is C^{∞} in the region of dynamical localization, random Schrödinger operator on $L^2(\mathbb{R}^d)$.

The fundamental difference between above work is, there is no well defined understanding of behavior of eigenvectors for the case of Toeplitz/Hankel matrix, but for the other work we are explicitly focusing on the region where the eigenvectors are exponentially localized.

Future direction

Consider the sequence of random matrices $\{A_{\alpha,L}^{\omega}\}_{L\in\mathbb{N}}$ given by $A_{\alpha,L}^{\omega}=\Delta_L+\frac{1}{L^{\alpha}}V^{\omega}$, where Δ_L is Laplacian and V^{ω} is multiplication by i.i.d random variables, defined on \mathbb{C}^L .

Observe that $A_{\alpha,L}^{\omega}$ converges strongly to discrete Laplacian on $\ell^2(\mathbb{N})$ for $\alpha>0$. For $E_0\in (-2,2)$, consider the point process

$$\Lambda_{\alpha,E_0,L}^{\omega}(f)=Tr(f(L(A_{\alpha,L}^{\omega}-E_0))) \text{ for } f\in C_c(\mathbb{R}).$$

For $\alpha>\frac{1}{2}$, it can be shown that $\Lambda_{\alpha,E_0,L}^{\omega}$ converges to clock process, in sense of distribution, as $L\to\infty$.

The main goal is to show that for $\alpha<\frac{1}{2}$, the point process $\Lambda_{\alpha,E_0,L}^{\omega}$ converges to Poisson point process.

This would imply that local eigenvalue statistics is not a good indicator of the nature of spectrum locally.

References

- AM, D. R. Dolai, Schrödinger operators with decaying randomness - Pure point spectrum, arXiv:1808:05822.
- AM, P. A. Narayanan, On multiplicity of spectrum for Anderson type operators with higher rank perturbations, arXiv:1808:05820.
- AM, M. Krishna, Global multiplicity bounds and Spectral Statistics Random Operators, arXiv:1803:06895.
- AM, D. R. Dolai, Multiplicity theorem of singular Spectrum for general Anderson type Hamiltonian, arXiv:1709:01774.
- AM, D. R. Dolai, Spectral statistics of random Schrödinger operator with growing potential, arXiv:1506.07132.