

Tetrahedral hyperbolic 3-manifolds and links

Andrei Vesnin

Knots Through Web, August 24, 2020 (Online), ICTS of the Tata Institute of Fundamental Research

Tomsk State University, Russia

Outline

- 1. Hyperbolic 3-space and 3-manifolds
- 2. Complexity of cusped 3-manifolds
- 3. Tetrahedral manifolds
- 4. A census of tetrahedral manifolds
- 5. Tetrahedral links in S^3
- 6. Volumes of tetrahedral manifolds and clasical arithmetic functions

Hyperbolic 3-space and

3-manifolds

Hyperbolic 3-space

Consider a model of the hyperbolic (Lobachevsky) space in the upper half-space $\mathbb{H}^3 = \{(x, y, t) \in \mathbb{R}^3 \mid t > 0\}$ with

$$ds^2 = \frac{dx^2 + dy^2 + dt^2}{t^2}.$$

- Geodesics = Euclidean half-lines and hemicirclies orthogonal to the plane {t = 0}.
- Plaines = Euclidean half-planes and hemispheres orthogonal to the plane $\{t=0\}$.
- Volume: dvol = $\frac{dx \, dy \, dt}{t^3}$.

2

Poincare extension

Absolute, i.e. the boundary of a hyperbolic 3-space $\partial \mathbb{H}^3 = \overline{\mathbb{C}}$.

A point $(x,y,t)\in\mathbb{H}^3$ can be presented as a quaternion

$$x + y \cdot i + t \cdot j + 0 \cdot k = z + tj.$$

For a linear-fractional transformation

$$z\mapsto rac{az+b}{cz+d},$$
 где $ad-bc=1,$ $a,b,c,d\in\mathbb{C}$

of the Riemann sphere $\overline{\mathbb{C}}$, we extend its action to \mathbb{H}^3 as a product of quaternions:

$$z+tj\mapsto (a(z+tj)+b)(c(z+tj)+d)^{-1}.$$

The group of orientation-preserving isometries of the space \mathbb{H}^3 :

$$\operatorname{Isom}^+(\mathbb{H}^3) \cong \operatorname{PSL}(2,\mathbb{C}) = \operatorname{SL}(2,\mathbb{C})/\{\pm I\}.$$

Hyperbolic manifolds and hyperbolic knots

By a hyperbolic structure on an n-manifold M, we mean a Riemannian metric on M of constant sectional curvature -1. A structure is complete if the induced metric is complete.

The Mostow–Prasad rigidity theorem. If an orientable n-manifold with $n \ge 3$ admits a complete hyperbolic structure of finite volume, then this structure is unique.

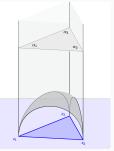
A knot or link K in S^3 is hyperbolic if its complement $S^3 - K$ admits a complete hyperbolic structure of finite volume.

Theorem [Thurston, 1982]. A prime knot in S^3 is hyperbolic if and only if it is neither a torus knot nor a satellite knot.

Ideal tetrahedra in \mathbb{H}^3

Theorem [Andreev, 1970]. An acute-angled tetrahedron in \mathbb{H}^3 is uniquely determined by its dihedral angles.

A tetrahedron T is called ideal if all its vertices belongs to $\partial \mathbb{H}^3$.



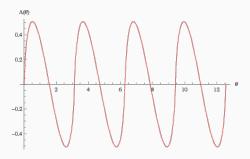
Lemma. Opposite dihedral angles are equal and $\alpha_1 + \alpha_2 + \alpha_3 = \pi$.

Below we denote an ideal tetrahedron by $T(\alpha_1, \alpha_2, \alpha_3)$.

Volumes of ideal tetrahedra

Volumes of 3-dimensional hyperbolic polyhedra and manifolds can be found in terms of the Lobachevsky function

$$\Lambda(\theta) = -\int_0^\theta \ln \mid 2 \sin x \mid dx.$$

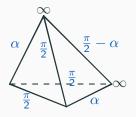


Lobachevsky function

Theorem [Kubert identity]. For any positive integer m the Lobachevsky function satisfies the following relation:

$$\Lambda(m\theta) = m \sum_{k=0}^{m-1} \Lambda\left(\theta + \frac{k\pi}{m}\right).$$

Geometrical meaning of the Lobachevsky function:



Volume of this tetrahedra is equal to $\frac{1}{2}\Lambda(\alpha)$.

7

Regular ideal tetrahedron

Theorem [Milnor]. Let $T(\alpha, \beta, \gamma)$ be an ideal tetrahedron in \mathbb{H}^3 . Then

$$vol(T(\alpha, \beta, \gamma)) = \Lambda(\alpha) + \Lambda(\beta) + \Lambda(\gamma).$$

Corollary. A regular ideal tetrahedron $T(\pi/3, \pi/3, \pi/3)$ has the maximum volume among all (finite volume) tetrahedra in \mathbb{H}^3 . The volume is equal to

$$v_3 = \text{vol}(T(\pi/3, \pi/3, \pi/3)) = 3\Lambda(\pi/3) =$$

 $1.014941606409653625021202554274520285941689307530299792\dots$

Cusped hyperbolic 3-manifolds

Let M be a connected hyperbolic 3-manifold obtained by gluing together a finite set \mathcal{P} of pairwise disjoint ideal (with all vertices are at the absolute) tetrahedra from \mathbb{H}^3 .

Let S be the set of all faces of tetrahedra from P. Assume that the gluing is realized by a pairing Θ along faces S by isometries of \mathbb{H}^3 .

The pairing Θ extends to a pairing of ideal vertices of tetrahedra from \mathcal{P} that splits all ideal vertices in classes of equivalent.

For an ideal vertex v denote by [v] it equivalence class.

A class of equivalent ideal vertices is called a cusp of M.

Cusped hyperbolic 3-manifolds

Let v be an ideal vertex of a tetrahedra P_v from \mathcal{P} . Choose a horoshere Σ_v at v which intersects only those faces of \mathcal{S} which are incident to v. A link of a vertex v is a set $L(v) = P_v \cap \Sigma_v$.

Since L(v) is a compact Euclidean polygon in Σ_v , the pairing Θ induces a gluing of polygons $\{L(u): u \in [v]\}$ along sides by similarities.

Denote the resulting surface by L[v]. The surface L[v] is said to be a link of the cusp [v] of M.

If every isometry from Θ is orientation-preserving, then L[v] is a torus. Otherwise, it can be is a Klein bottle.

Hyperbolic 3-manifold M is complete if and only if for each of its cusps [v] the link L[v] is complete.

Complexity of cusped 3-manifolds

Complexity of cusped hyperbolic 3-manifolds

We say that complexity c(M) of a cusped hyperbolic 3-manifold M is equal to k if M admits an ideal triangulation with k tetrahedra and there is no an ideal triangulation with less number of tetrahedra.

If
$$c(M) = k$$
, then $vol(M) \leqslant v_3 k$, hence $c(M) \geqslant \frac{vol(M)}{v_3}$.

There is only a finite number of manifolds of a given complexity.

Problem. Classify hyperbolic 3-manifolds (and hyperbolic knots) according to their complexity.

Example: 2-bridge knots and links

The Conway normal form of a two-bridge link K(p/q). Here a_j denotes a number of half-twists.

Example: complements of 2-bridge knots and links

Proposition [Petronio – V., 2009]. Let K(p,q) be a hyperbolic two-bridge link with $p/q = [a_1, a_2, \ldots, a_n]$, $n \ge 2$, $a_i > 0$ and $a_1, a_n > 1$. Then

$$2n-2\leqslant c(S^3\setminus K(p/q)).$$

Theorem [Ishikawa – Nemoto, 2015]. With above conditions we have:

$$c(S^3 \setminus K(p,q)) \leqslant \sum_{i=1}^n a_i + 2(n-3) - \sharp \{a_i = 1\}.$$

Corollary. If $p/q = [a_1, a_2, ..., a_n] = [2, 1, ..., 1, 2]$, $n \ge 2$, then $c(S^3 \setminus K(p, q)) = 2n - 2$.

Tetrahedral manifolds

Tetrahedral manifolds

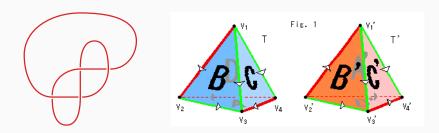
We call a cusped hyperbolic 3-manifold tetrahedral if it can be decomposed into regular ideal tetrahedra.

Let M be a tetrahedral manifold which can be decomposed into k regular ideal tetrahedra. Since ideal regular tetrahedron has maximal volume, we have c(M) = k.

For k=1 there is a unique tetrahedral manifold is the Gieseking manifold (1912) that is non-orientable.

For k=2 one of orientable tetrahedral manifolds is the figure-eight knot complement.

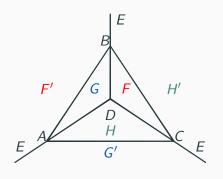
The figure-eight knot complement



The figure-eight knot and triangulation of its complement into 2 regular ideal tetrahedra.

The figure-eight knot and gluing of ideal tetrahedra

Let $P = ABCD \cup ABCE$, where ABCD and ABCE are regular ideal tetrahedra.



The pairing of faces by isometries:

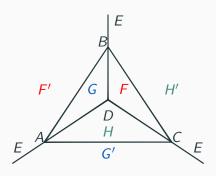
$$f: F = BCD \rightarrow F' = BEA$$
,

$$g: G = ADB \rightarrow G' = ACE$$
,

$$h: H = CDA \rightarrow H' = ECB.$$

Denote
$$\Theta = \langle \mathbf{f}, \mathbf{g}, \mathbf{h} \rangle$$

Equivalence classes of edges



Edges of P split in classes of equivalent under the group action:

$$BA \xrightarrow{g} EA \xrightarrow{f^{-1}} CD \xrightarrow{h} EC \xrightarrow{g^{-1}} BD \xrightarrow{f} BA,$$

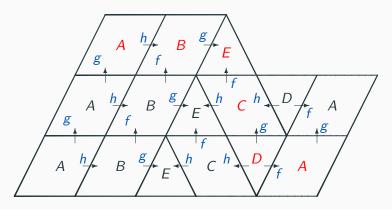
where $g f^{-1} h g^{-1} f = 1$; and

$$AD \stackrel{g}{\longrightarrow} AC \stackrel{h}{\longrightarrow} BE \stackrel{f^{-1}}{\longrightarrow} BC \stackrel{h^{-1}}{\longrightarrow} AD,$$

where
$$g h f^{-1} h^{-1} = 1$$
.

Equivalence classes of ideal vertices

All ideal vertices of P are equivalent to one [v] := [A] = [B] = [C] = [D] = [E] under the action of the group $\Theta = \langle f, g, h \rangle$.



An Euclidean plane \mathbb{E}^2 as the universal cover of the link L[v].

A census of tetrahedral manifolds

Orientable tetrahedral manifolds of complexity $\leqslant 8$

[P. Callahan, M. Hildebrand, J. Weeks]: listed all hyperbolic 3-manifolds which can be glued from ≤ 7 ideal (not necessary regular) tetrahedra (4,815 manifolds).

[M. Thistlethwaite]: listed all hyperbolic 3-manifolds which can be glued from 8 ideal (not necessary regular) tetrahedra (12,846 manifolds).

[Fominykh – Tarkaev – V.]: independent generation of orientable tetrahedral manifolds of complexity at most 8. Recognition: by homology and Turaev – Viro quantum invariants of 3-manifolds.

Theorem. There are only 29 orientable tetrahedral manifolds of complexity at most 8. Among them 17 have 1 cusp and 12 have 2 cusps.

Orientable tetrahedral manifolds of complexity 9, 10

Theorem [Fominykh – Tarkaev – V., 2014]. There is unique orientable tetrahedral manifold of complexity 9. This manifold has 1 cusp.

Theorem [Fominykh – Tarkaev – V., 2014]. Let N(10, k) be a number of orientable tetrahedral manifolds of complexity 10 with k cusps. Then k = 1, 2, 3, 4, 5 and

- 1. $11 \leq N(10,1) \leq 15$;
- 2. $15 \leq N(10,2) \leq 20$;
- 3. $9 \le N(10,3) \le 15$;
- 4. N(10,4)=3;
- 5. N(10,5) = 1.

Bad news: not all constructed manifolds can be recognized by the first homology group and Turaev – Viro invariants.

Computer software to study 3-manifolds

- SnapPy is a computer program for studding the topology and geometry of 3-manifolds, with focus on hyperbolic structures. Written by Marc Culler, Nathan Dunfield, and Mathias Goerner using the SnapPea kernel written by Jeff Weeks.
- Regina is a software package for 3-manifold and 4-manifold topologist, with a focus on triangulations, normal surfaces and angle structures. The primary developers of Regina are Benjamin Burton, Ryan Budney, and Willian Pettersson.
- Recognizer is a computer program to study 3-manifolds given by spines, with a focus on complexity of 3-manifolds. Written by Sergey Matveev and Vladimir Tarkaev.

The main theorem

Theorem [FGGTV, 2016] The number of combinatorial tetrahedral tessellations and tetrahedral manifolds up to 25 tetrahedra for orientable manifolds and up to 21 tetrahedra for non-orientable manifolds are listed in tables below.

EXPERIMENTAL MATHEMATICS 2016, VOL. 25, NO. 4, 466–481 http://dx.doi.org/10.1080/10586458.2015.1114436

A Census of Tetrahedral Hyperbolic Manifolds

Evgeny Fominykh^{a,b}, Stavros Garoufalidis^c, Matthias Goerner^d, Vladimir Tarkaev^a, and Andrei Vesnin^e

*Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk, Russia: *Institute of Mathematics and Mechanics, Ekaterinburg, Russia; *School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA; *Pixar Animation Studios, Emeryville, CA, USA; *Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

ABSTRACT

We call a cusped hyperbolic 3-manifold tetrahedral if it can be decomposed into regular ideal tetrahedra. Following an earlier publication by three of the authors, we give a census of all tetrahedral manifolds and all of their combinatorial tetrahedral tessellations with at most 25 (orientable case) and 21 (non-orientable case) tetrahedra. Our isometry classification uses certified canonical cell decompositions (based on the compositions) and the composition of the compositions of

KEYWORDS

hyperbolic 3-manifolds; regular ideal tetrahedron; census; tetrahedral manifolds; Bianchi orbifolds

arXiv:1502.00383 contains 62 source and data files for computer programs SnapPy and Regina.

Table 1. Number of triangulations in the census.

	Combinatorial tet. tessellations		Tetrahedral	Homology	
Tetrahedra	Orientable	Non-or.	Orientable	Non-or.	links
1	0	1	0	1	0
2	2	2	2	1	1
3	0	1	0	1	0
4	4	4	4	2	2
5	2	12	2	8	0
6	7	14	7	10	0
7	1	1	1	1	0
8	14	10	13	6	5
9	1	6	1	6	0
10	57	286	47	197	12
11	0	17	0	17	0
12	50	117	47	80	7
13	3	8	3	8	0
14	58	134	58	113	25
15	91	975	81	822	0
16	102	175	96	142	32
17	8	52	8	52	0
18	213	1118	199	810	66
19	25	326	25	326	0
20	1886	26,320	1684	22,340	209
21	31	251	31	251	0
22	390	-	381	-	148
23	58	-	58	-	0
24	1544	-	1465	-	378
25	7563	-	7367	-	0

Computations

The most computationally hard part was the combinatorial enumeration of tetrahedral triangulations.

The case of orientable triangulations up to 25 tetrahedra and the cases of non-orientable triangulations up to 21 tetrahedra needed about 6 weeks each. We used the server processor Xeon E5-2630, 2.3 Ghz.

All orientable tetrahedral triangulations with $n \le 7$ tet.

n	Signatures	Name	n	Signatures	Name	
2	cPcbbbdxm	otet02 ₀₀₀₀	6	gLLPQccdfeefqjsqqjj	otet06 ₀₀₀₀	
2	cPcbbbiht	otet02 ₀₀₀₁	6	gLLPQccdfeffqjsqqsj	otet06 ₀₀₀₁	
4	eLMkbbdddemdxi	otet04 ₀₀₀₀	6	gLLPQceefeffpupuupa	otet06 ₀₀₀₂	
4	eLMkbcddddedde	otet04 ₀₀₀₁	6	gLMzQbcdefffhxqqxha	otet06 ₀₀₀₃	
4	eLMkbcdddhxqdu	otet04 ₀₀₀₂	6	gLMzQbcdefffhxqqxxq	otet06 ₀₀₀₄	
4	eLMkbcdddhxqlm	otet04 ₀₀₀₃	6	gLvQQadfedefjqqasjj	otet06 ₀₀₀₅	
5	fLLQcbcedeeloxset	otet05 ₀₀₀₀	6	gLvQQbefeeffedimipt	otet06 ₀₀₀₆	
5	fLLQcbdeedemnamjp	otet05 ₀₀₀₁	7	hLvAQkadfdgggfjxqnjnbw	otet07 ₀₀₀₀	

For any triangulation \mathcal{T} with n tetrahedra we find isomorphism signature that is the lexicographically smallest 24n—bit sequence presenting the triangulation. We use 64-version of the dehydration presentation of the sequence taking in account the correspondence between integers $0, 1, \ldots, 63$ and characters:

integer	0	 25	26	 51	52	 61	62	63
character	а	 z	Α	 Z	0	 9	+	-

Commensurability and arithmeticity of tetrahedral manifolds

Two manifolds (or orbifolds) are commensurable if they have a common finite cover.

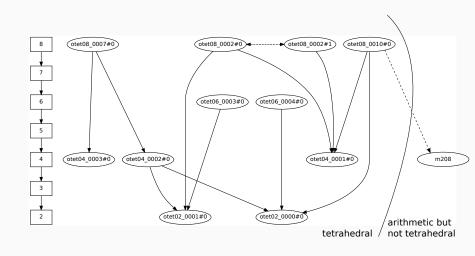
Lemma [due to C. Maclachlan and A. Reid]. For a cusped hyperbolic manifold M, the following are equivalent

- *M* is commensurable with the figure-eight knot complement.
- M is arithmetic with invariant trace field $\mathbb{Q}(\sqrt{-3})$.
- The invariant trace field of M is $\mathbb{Q}(\sqrt{-3})$ and M has integer traces.

Lemma. All tetrahedral manifolds are arithmetic with invariant trace field $\mathbb{Q}(\sqrt{-3})$ and commensurable to each other.

Remark. The converse to the Lemma doesn't hold. There are (at least 8) arithmetic manifolds commensurable to the figure-eight knot complement which are not tetrahedral.

Covering diagram



Tetrahedral links in S^3

Homological links

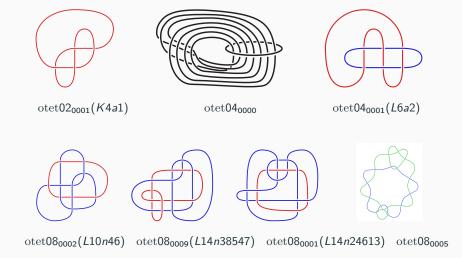
We say that M is a homology link complement if $H_1(M, \mathbb{Z}) = \mathbb{Z}^c$, where c is the number of cusps. This condition is equivalent to the fact that M is a complement of a link in an integer homology sphere.

Homological links up to 25 tet.

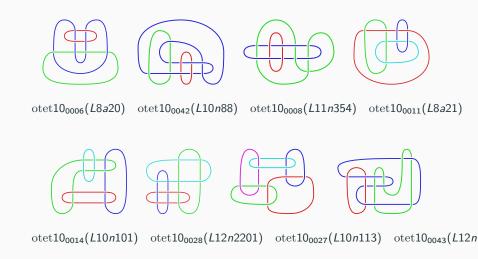
Tetrahedra	homology links
2	1 (K4a1)
4	2 (Berge link, L6a2)
8	5 (4 of them are L10n46, L14n38547, L14n24613, otet8 ₀₀₀₅)
10	12 (11 of them are L8a20, L10n88, L11n354, L8a21, L10n101,
	L12n2201, L10n113, L12n1739, otet100007, otet100003, otet100025)
12	7
14	25
16	32
18	66
20	209
22	148
24	378

Conjecture. Every tetrahedral link complement has an even number of tetrahedra.

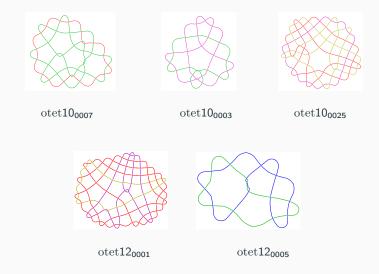
Tetrahedral links with 2, 4, and 8 tetrahedra



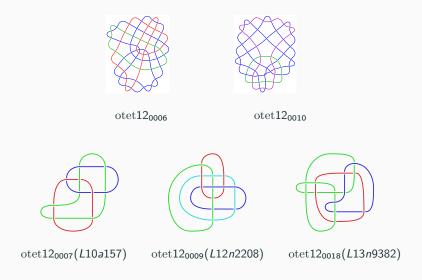
Tetrahedral links with 10 tetrahedra



Tetrahedral links with 10 and 12 tetrahedra



Tetrahedral links with 12 tetrahedra



Number of cusps and number of tetrahedra

C. Adams, W. Sherman [1991]: Denote by $\sigma(k)$ a minimum number of ideal tetrahedra which are necessary to construct an orientable hyperbolic 3-manifolds with k cusps.

It is known that
$$\sigma(1)=2$$
, $\sigma(2)=4$, $\sigma(3)=6$, $\sigma(4)=8$, $\sigma(5)=10$.

For $k \ge 2$ there is an upper bound $\sigma(k) \le 4k - 4$.

Conjecture.
$$\sigma(6) = 16$$
, $\sigma(7) = 20$, $\sigma(9) = 30$.

Denote by $\sigma^r(k)$ the minimum number of regular ideal tetrahedra which are necessary to construct an orientable hyperbolic 3-manifolds with k cusps.

We have got:
$$\sigma^r(1) = 2$$
, $\sigma^r(2) = 4$, $\sigma^r(3) = 10$, $\sigma^r(4) = 10$, $\sigma^r(5) = 10$, $\sigma^r(6) = 16$, $\sigma^r(7) = 20$.

Volumes of tetrahedral manifolds and clasical arithmetic functions

Fundamental group of a knot complement

Since any tetrahedral manifold M is commensurable to the figure-eight knot complement, we have

$$\operatorname{vol}(M) = \frac{c(M)}{2}\operatorname{vol}(S^3 \setminus \mathcal{F}).$$

The group $\Gamma = \pi_1(S^3 \setminus \mathcal{F}) = \langle a, b \mid ab^{-1}aba^{-1} = b^{-1}aba^{-1}b \rangle$. has a faithful presentation in $\mathrm{PSL}(2,\mathbb{C}) = \mathrm{Isom}^+\mathbb{H}^3$:

$$heta(a)\mapsto egin{pmatrix} 1 & 0 \ -\omega & 1 \end{pmatrix} \qquad heta(b)\mapsto egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix},$$

where $\omega = -1/2 + \sqrt{-3}/2$. Hence $\Gamma \subset \mathrm{PSL}(2,\mathbb{Q}(\sqrt{-3}))$.

Arithmetic groups

Let $F = \mathbb{Q}(\sqrt{-d})$ be the imaginary quadratic number field, $d \ge 1$, and \mathcal{O}_d be the ring of integers of F.

 $\mathrm{PSL}(2,\mathcal{O}_d)$ is a discrete subgroup of $\mathrm{PSL}(2,\mathbb{C})$, known as Bianchi group. Thus, $\mathbb{H}^3/\mathrm{PSL}(2,\mathcal{O}_d)$ is a hyperbolic 3-orbifold.

Let G be a torsion-free subgroup of $\mathrm{PSL}(2,\mathcal{O}_d)$. Then \mathbb{H}^3/G is an orientable hyperbolic 3-manifold.

Theorem [Riley]. The group $\Gamma = \pi_1(S^3 \setminus \mathcal{F})$, where \mathcal{F} is the figure-eight knot, is a subgroup of $\mathrm{PSL}(2, \mathcal{O}_3)$ of index 12.

Humbert volume formula

Dedekind zeta-function: for Re(s) > 1,

$$\zeta_F(s) = \sum_{\mathcal{I} \subseteq \mathcal{O}_F} \frac{1}{(N(\mathcal{I}))^s},$$

where \mathcal{O}_F is the ring of integers, the sum is taken over all nonzero prime ideals, and $N(\mathcal{I}) = [\mathcal{O}_F : \mathcal{I}]$ is the norm.

Theorem [Humbert, 1919].

$$\operatorname{vol}(\mathbb{H}^3/\operatorname{PSL}(2,\mathcal{O}_d)) = \frac{D_d \sqrt{D_d}}{4\pi^2} \zeta_{\mathbb{Q}(\sqrt{-d})}(2),$$

where $D_d = d$ for $d \equiv 3 \mod 4$, and $D_d = 4d$ otherwise.

L-function

If d = 3 then $D_3 = 3$, and

$$\operatorname{vol}(\mathbb{H}^3/\operatorname{PSL}(2,\mathcal{O}_3)) = \frac{3\sqrt{3}}{4\pi^2} \zeta_{\mathbb{Q}(\sqrt{-3})}(2).$$

Dirichlet L-function is

$$L(s,\chi)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n^s},$$

where $\chi(n)$ is a Dirichlet character. Consider a character χ_{-3} by modulo 3:

$$\chi_{-3}(n) =
\begin{cases}
0, & n \equiv 0 \mod 3, \\
1, & n \equiv 1 \mod 3, \\
-1, & n \equiv 2 \mod 3.
\end{cases}$$

Volume and L-function

Thus,

$$L(s,\chi_{-3}) = 1 - \frac{1}{2^s} + \frac{1}{4^s} - \frac{1}{5^s} + \frac{1}{7^s} - \frac{1}{8^s} + \dots$$

Recall that

$$\chi_{\mathbb{Q}(\sqrt{-3})}(s) = \zeta(s)L(s,\chi_{-3}).$$

Since $\zeta(2) = \pi^2/6$ we get

$$vol(\mathbb{H}^3/PSL(2,\mathcal{O}_3)) = \frac{3\sqrt{3}}{4\pi^2} \cdot \frac{\pi^2}{6} \cdot L(2,\chi_{-3}),$$

whence

$$\mathsf{vol}(S^3 \setminus \mathcal{F}) = 12 \cdot \frac{3\sqrt{3}}{4\pi^2} \cdot \frac{\pi^2}{6} \cdot L(2, \chi_{-3}) = \frac{3\sqrt{3}}{2} L(2, \chi_{-3}).$$

Mahler measure

For polynomial $P \in \mathbb{C}[x_1, x_2, \dots, x_k]$ define Mahler measure:

$$M(P) = \exp\left\{\int_0^1 \cdots \int_0^1 \log|P(e^{2\pi i t_1}, \dots, e^{2\pi i t_k})|dt_1 \cdots dt_k\right\}$$

and logarithmic Mahler measure: $m(P) = \log M(P)$.

Assume
$$P(x) = a \prod_{i=1}^{n} (x - \alpha_k)$$
, then

$$M(P) = |a| \cdot \prod_{k=1}^{n} \max\{1, |\alpha_k|\}.$$

For example, $M(ax + b) = \max\{|a|, |b|\}.$

Lehmer conjecture

[Lehmer conjecture, 1933]: There exists $\lambda>1$ such that: if $P\in\mathbb{Z}[x]$, monic, then

$$M(P) = 1$$
 or $M(P) \ge \lambda$.

The best known $\lambda=1.72623\ldots$ is the root of the Lehmer polynomial

$$P(x) = x^{10} - x^9 + x^7 - x^6 + x^5 - x^4 + x^3 - x + 1.$$

It is interesting that this polynomial is the Alexander polynomial of the pretzel (-2, 3, 7)-knot.

Mahler measure and L-function

Let $P \in \mathbb{C}[x, y]$. It is known that

$$M(1+x+y) = M(\max\{1, |1+x|\})$$

$$M(1+x+y-xy) = M(\max\{|1-x|, |1+x|\})$$

[Smyth, 1981]:

$$m(1+x+y)=\frac{3\sqrt{3}}{4\pi}L(2,\chi_{-3}).$$

Thus, we obtained

$$\operatorname{vol}(S^3 \setminus \mathcal{F}) = 2\pi \cdot m(1+x+y).$$

Logarithmic Mahler measure and hyperbolic volume

Let $f_{a,b,c}(x,y)=a+bx+cy$. Consider an Euclidean triangle with side lengths a,b,c. Its angles are α,β,γ such that $\alpha+\beta+\gamma=\pi$. Let $T(\alpha,\beta,\gamma)$ be an ideal hyperbolic tetrahedron with such dihedral angles.

Theorem. [Maillot, 2000] Let $a,b,c\in\mathbb{C}$ be such that there exists an Euclidean triangle with lengths |a|, |b|, |c|, and let α,β,γ be its angles. Denote $z=|\frac{a}{b}|e^{i\gamma}$. Then

$$\pi m(a + bx + cy) = \operatorname{vol}(T_z) + \alpha \log|a| + \beta \log|b| + \gamma \log|c|.$$

If a triangle with such side lengths doesn't exist, then

$$m(a + bx + cy) = \log \max\{|a|, |b|, |c|\}.$$

Here T_z is an ideal tetrahedron with dihedral angles

$$\arg z$$
, $\arg \frac{1}{1-z}$, $\arg (1-\frac{1}{z})$.

References and used computer programs.

[1] Fominykh E., Garoufalidis S., Goerner M., Tarkaev V., Vesnin A. A census of tetrahedral hyperbolic manifolds. // Experimental Mathematics, 2016, 25(4), 466–481.

All files with programs and computation results are available at:

- [2] supplementary files to arXiv:1502.00383
- [3] http://unhyperbolic.org/tetrahedralCensus/

Used computer programs:

- [4] SnapPy, a computer program for studying the topology of 3-manifolds. http://snappy.computop.org
- [5] Regina, Software for 3-manifold topology and normal surface theory. http://regina.sourceforge.net
- [6] HIKMOT, a Python module for verified computations for hyperbolic 3-manifolds. http://www.oishi.info.waseda.ac.jp/takayasu/hikmot

Thank you!