Quantum Anomalies

Classical anomaly: symmetry not restored even if the symmetry breaking parameter vanishes

Example: dissipative anomaly in turbulence — time reversibility remains broken even in the limit of vanishing viscosity.

Quantum anomaly: Classical symmetry (invariance) of a theory is not preserved at the quantum level

Example: Axial anomaly — non-conservation of `chiral' particle density in massless Dirac Fermions in an Electromagnetic field.

Am. J. Phys. 61 (2), February 1993 Anomalies for pedestrians Barry R. Holstein Scholarpedia article (2008): *Axial anomaly* Roman W Jackiew

Axial or Chiral Anomaly in massless Dirac Fermions

Massless Dirac fermions
$$i\gamma^{\mu}\frac{\partial}{\partial x_{\mu}}\psi = 0 \quad \longrightarrow \quad i\gamma^{\mu}\frac{\partial}{\partial x_{\mu}}\psi_{\pm} = 0 \qquad \psi_{\pm} = \frac{1}{2}(I\pm\gamma_{5})$$

 $P_{\pm}\psi_{\pm} = \pm\psi_{\pm}$

Additional symmetry: axial gauge symmetry => time ind. axial charge

Non conservation of "chiral charge" upon quantization = axial/chiral anomaly

Scholarpedia article (2008): *Axial anomaly* Roman W Jackiew of the type just described, points k_r. For a crystal without an contact of inequivalent NT_++++=_11++ :f energy separation $\delta E(\mathbf{k} + \mathbf{\kappa})$ **S**₉₃₇ e: Accidental Degeneracy in the Energy Bands of Crystals of a point k where contact **CONVERS HERRING** Princeton University, Princeton, New Jersey folds occurs may be expect 1a . . (Received June 16, 1937) of κ as $\kappa \rightarrow 0$, for all direction pace group consists only plus an inversion, three For a crystal with an s may ^Hord cut?, + which caste $\cos \epsilon \eta e r g v \sin s e p a t a t o n \delta E(\mathbf{k}') a$ hen energy is considered curve of contact of equivale expected to be of the order $H(\mathbf{k}) = \varepsilon_0 \sigma_0 \pm \hbar v_F (\mathbf{k} - \mathbf{k}_0) \cdot \sigma$ iction of wave vector in lattice space. The first from the curve.k circuit which is distinct All kinds of contacts of $-1 < \gamma < 1$ l from it by the inversion except the ones described a e is a simple clo Weyl and Dirac semimetals in three-dimensional solids articular N. P. Armitage, E. J. Mele, and Ashvin Vishwanath Rev. Mod. Phys. 90, 015001 - Published 22 January 2018 with the invel ts of contact of

Weyl Fermions

massless Dirac Fermions with a definite handedness

In non-centrosymmetric or magnetic materials, the non-degenerate conduction and valance band can form accidental band crossing at generic momenta.

In the vicinity of such crossing point, the Hamiltonian will be,

$$H(\delta \mathbf{k}) = f_0(\mathbf{k}_0)\sigma_0 + v_0\sigma_0 + \sum_{a=x,y,z} (\mathbf{v}_a \cdot \delta \mathbf{k}) \ \sigma^a.$$

For $\mathbf{v}_a = v\hat{a}$, where $\hat{a} = \hat{x}, \hat{y}, \hat{z}, H(\delta \mathbf{k})$ describe the equation of Weyl fermion.

Weyl Fermions

Chiral Anomaly (Addler, Bell and Jackiw)

anomalous non-conservation of chiral charge in high energy physics

Analogue in crystals

THE ADLER-BELL-JACKIW ANOMALY AND WEYL FERMIONS IN A CRYSTAL

H.B. NIELSEN

Niels Bohr Institute and Nordita, 17 Blegdamsvej, DK2100, Copenhagen Ø, Denmark

and

Masao NINOMIYA¹ Department of Physics, Brown University, Providence, RI 02912, USA

Example in 1D:

$$\dot{N}_R$$
 = Rate change of Fermi Surface = $\frac{1}{2\pi}\dot{k}$
and $\hbar\dot{k} = eE_{ext} \implies \dot{N}_R = \frac{eE_{ext}}{2\pi}$

 $\implies \dot{N}_R + \dot{\bar{N}}_L = \frac{eE_{ext}}{\pi}$

Chiral Charge Pumping in 1D WSM

1

Electrical Chiral Anomaly in Weyl Semimetals

Landau Levels in 3D WSM:

$$H = k^{(a)} v \mathbf{p} \cdot \boldsymbol{\sigma} \qquad \qquad k^{(a)} = \pm 1$$

 $N_R \propto E \times \text{degeneracy of Landau levels}$

$$\dot{N}_R \propto {f E}.{f B}$$

 $\epsilon_n(p_z) = \begin{cases} \pm v \sqrt{2n \frac{\hbar e}{c} B} + p_z^2, & n = 1, 2, \dots, \\ k^{(a)} v p_z, & n = 0. \end{cases}$

 $\mathbf{1}(a)$

$$e\partial_t n_{L/R} + \nabla \cdot \mathbf{j}_{L/R} = \mp \frac{e^3}{4\pi^2\hbar^2} \mathbf{E} \cdot \mathbf{B} \pm \frac{e}{2\tau_v} (n_R - n_L),$$

Chiral Charge Pumping in 3D WSM Stabilized by inter-node scattering

Quantum anomalies in Chiral fluids: Gravitational Chiral Anomaly

Gravitational: 'general covariance of the theory is destroyed'

In curved space, chiral fluids violate both chiral charge and chiral energy conservation:

$$\nabla_{\mu}T^{\mu\nu} = F^{\nu\mu}J_{\mu} - \frac{G}{16\pi^{2}}\nabla_{\mu}\left[\varepsilon^{\rho\sigma\alpha\beta}F_{\rho\sigma}R^{\nu\mu}_{\alpha\beta}\right],$$
$$\nabla_{\mu}J^{\mu} = -\frac{C}{8}\varepsilon_{\mu\nu\rho\sigma}F^{\mu\nu}F^{\rho\sigma} - \frac{G}{32\pi^{2}}\varepsilon^{\mu\nu\rho\sigma}R^{\alpha}_{\beta\mu\nu}R^{\beta}_{\alpha\rho\sigma},$$

C: chiral/axial anomaly G: chiral/axial gravitational anomaly

GRAVITATIONAL ANOMALIES

Luis ALVAREZ-GAUMÉ¹ Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

Edward WITTEN² Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA

Received 7 October 1983

Nuclear Physics B234 (1983) 269-330

PRL 107, 021601 (2011)

Gravitational Anomaly and Transport Phenomena

Karl Landsteiner, Eugenio Megías, and Francisco Pena-Benitez

PHYSICAL REVIEW B **89**, 075124 (2014) Anomalous transport of Weyl fermions in Weyl semimetals

Karl Landsteiner

Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals

Andrew Lucas^{a,1}, Richard A. Davison^{a,1}, and Subir Sachdev^{a,b,1}

PNAS 2016

Temperature gradient = Gravitational Potential (!)

Q: How do we calculate thermal response from Kubo formulas

PHYSICAL REVIEW VOLUME 135, NUMBER 6A 1964 Theory of Thermal Transport Coefficients*

A:

J. M. LUTTINGER

Varying EM field produces electric current + density fluctuations

Varying gravitational field produces energy current + temperature fluctuations (Energy density behaves as mass density, couples to gravitational potential)

$$\frac{\nabla T}{T} = \nabla \Phi \qquad \Phi \longrightarrow \text{Gravitational potential}$$

One route to probe gravitational anomalies is thermal transport experiments

Three regimes of Magneto-transport in WSM

Berry Curvature = magnetic field in momentum space

Magnetic field in momentum space !

$$\dot{\mathbf{r}} = \frac{1}{\hbar} \nabla_{\mathbf{k}} \epsilon_{\mathbf{k}} - \dot{\mathbf{k}} \times \mathbf{\Omega}_{\mathbf{k}}$$

Band velocity

 $\hbar \dot{\mathbf{k}} = -e\mathbf{E} - e\dot{\mathbf{r}} \times \mathbf{B}$

EOM in presence of Berry Curvature

Anomalous Hall effect Chiral magnetic effect

$$\dot{\mathbf{r}} = D_{\mathbf{k}} \left[\mathbf{v}_{\mathbf{k}} + \frac{e}{\hbar} (\mathbf{E} \times \boldsymbol{\Omega}_{\mathbf{k}}) + \frac{e}{\hbar} (\mathbf{v}_{\mathbf{k}} \cdot \boldsymbol{\Omega}_{\mathbf{k}}) \mathbf{B} \right]$$

$$\hbar \dot{\mathbf{k}} = D_{\mathbf{k}} \left[-e\mathbf{E} - e(\mathbf{v}_{\mathbf{k}} \times \mathbf{B}) - \frac{e^{2}}{\hbar} (\mathbf{E} \cdot \mathbf{B}) \boldsymbol{\Omega}_{\mathbf{k}} \right]$$

$$\hbar \mathbf{v}_{\mathbf{k}} = \nabla_{\mathbf{k}} \epsilon_{\mathbf{k}} \quad \text{and} \quad D_{\mathbf{k}} = D(\mathbf{B}, \boldsymbol{\Omega}_{\mathbf{k}}) \equiv [1 + \frac{e}{\hbar} (\mathbf{B} \cdot \boldsymbol{\Omega}_{\mathbf{k}})]^{-1}$$
Lorentz Force (Hall effect + Planar Hall effect)
Planar Hall effect

Berry Phase Effects on Electronic Properties RMP, 2010

Di Xiao Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan

Qian Niu

Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA

Origin of Quantum Anomalies in Semiclassical transport

$$\dot{\mathbf{r}} = D_{\mathbf{k}} \left[\mathbf{v}_{\mathbf{k}} + \frac{e}{\hbar} (\mathbf{E} \times \mathbf{\Omega}_{\mathbf{k}}) + \frac{e}{\hbar} (\mathbf{v}_{\mathbf{k}} \cdot \mathbf{\Omega}_{\mathbf{k}}) \mathbf{B} \right]$$
$$\hbar \dot{\mathbf{k}} = D_{\mathbf{k}} \left[-e\mathbf{E} - e(\mathbf{v}_{\mathbf{k}} \times \mathbf{B}) - \frac{e^2}{\hbar} (\mathbf{E} \cdot \mathbf{B}) \mathbf{\Omega}_{\mathbf{k}} \right]$$

$$\mathbf{j}^e = -e \int [d\mathbf{k}] D^{-1} \, \dot{\mathbf{r}} \, g_{\mathbf{k}}$$

 $g_{\mathbf{k}}
ightarrow f(\epsilon_{\mathbf{k}}, \mu, T)$ in equilibrium

Do a Sommerfeld expansion $(\mu > k_B T)$

$$\mathbf{j}_e^s = e\left(\mathcal{C}_0^s \mu \mathbf{B} + T \mathcal{C}_1^s \mathbf{B}\right) \qquad \text{Charge}$$
Chiral magnetic velocity
$$\mathbf{j}_Q^s = \mu^2 \frac{\mathcal{C}_0^s}{2} \mathbf{B} + \mu T \mathcal{C}_1^s \mathbf{B} + T^2 \mathcal{C}_2^s \mathbf{B} \qquad \text{Energy}$$

 C_0^s = Electrical CA, C_1^s = Thermal CA, C_2^s = Gravitational CA

Non-equilibrium: Boltzmann transport

$$\frac{\partial g_{\mathbf{r},\mathbf{k}}^{s}}{\partial t} + \dot{\mathbf{r}}^{s} \cdot \nabla_{\mathbf{r}} g_{\mathbf{r},\mathbf{k}}^{s} + \dot{\mathbf{k}}^{s} \cdot \nabla_{\mathbf{k}} g_{\mathbf{r},\mathbf{k}}^{s} = I_{\text{coll}}\{g_{\mathbf{r},\mathbf{k}}^{s}\}$$

Local equilibrium approximation

$$I_{\text{coll}}^{s} = -\frac{g_{\mathbf{r},\mathbf{k}}^{s} - f\left(\tilde{\epsilon}^{s},\mu^{s},T^{s}\right)}{\tau_{0}} - \frac{g_{\mathbf{r},\mathbf{k}}^{s} - f(\tilde{\epsilon}^{s},\mu^{\bar{s}},T^{\bar{s}})}{\tau_{v}}$$

- Intravalley relaxation + Intervalley relaxation

- Each node has its own chemical potential and Temperature

Generally
$$au_v \gg au_0$$
 "Chiral Limit"

Integrating the Boltzmann equation over the BZ gives

$$\frac{\partial \mathcal{N}^{s}}{\partial t} = \mathcal{C}_{0}^{s} \mathbf{E} \cdot \mathbf{B} + \mathcal{C}_{1}^{s} \nabla T \cdot \mathbf{B} - \frac{\mathcal{N}^{s} - \mathcal{N}^{\bar{s}}}{\tau_{v}} \qquad \begin{array}{l} \text{Chiral Charge} \\ \text{pumping} \end{array}$$

$$\frac{\partial \mathcal{E}^{s}}{\partial t} = (eT\mathcal{C}_{1}^{s} + \mu\mathcal{C}_{0}^{s}) \mathbf{E} \cdot \mathbf{B} + (\mu\mathcal{C}_{1}^{s} + \mathcal{C}_{2}^{s}) \nabla T \cdot \mathbf{B} - \frac{\mathcal{E}^{s} - \mathcal{E}^{\bar{s}}}{\tau_{v}} \qquad \begin{array}{l} \text{Chiral Energy} \\ \text{pumping} \end{array}$$

- Chiral energy and charge pumping are stabilised by the inter-valley scattering to reach a steady state.
- This chiral transfer leads to chemical potential and temperature imbalance between the two Weyl nodes in the steady state.

Quantum Anomalies in Semiclassical transport

Manifest as chiral chemical potential imbalance and chiral temperature imbalance

Lead to a different mechanism for charge and energy transfer in WSM

This has interesting consequences for megneto-transport phenomena for WSM

Local chemical potential and local temperature

Working in the linear response regime in ∇T and **E**

we have $\delta \mu^s < \mu$, and $\delta T^s < T$

$$\begin{pmatrix} \delta\mu^{s} \\ \delta T^{s}/T \end{pmatrix} = -\frac{\tau_{v}}{2} \begin{pmatrix} \mathcal{D}_{0}^{s} & \mathcal{D}_{1}^{s} \\ \mathcal{D}_{1}^{s} & \mathcal{D}_{2}^{s} \end{pmatrix}^{-1} \begin{pmatrix} \Lambda_{0}^{s} & \Lambda_{1}^{s} \\ \Lambda_{1}^{s} & \Lambda_{2}^{s} \end{pmatrix} \begin{pmatrix} e\mathbf{B} \cdot \mathbf{E} \\ \mathbf{B} \cdot \nabla T/T \end{pmatrix}$$

$$\textbf{Generalized energy densities} \qquad \textbf{where}$$

$$\begin{pmatrix} \mathcal{D}_{n}^{s} \\ \Lambda_{n}^{s} \end{pmatrix} = \int \frac{d\mathbf{k}}{(2\pi)^{3}} (\tilde{\epsilon}^{s} - \mu)^{n} (-\partial_{\tilde{\epsilon}^{s}} f) \times \begin{pmatrix} 1 + e\mathbf{\Omega}^{s} \mathbf{B}/\hbar \\ \frac{e}{\hbar} (\tilde{\mathbf{v}}^{s} \cdot \mathbf{\Omega}^{s}) \end{pmatrix}$$

$$\textbf{Generalized energy velocities}$$

The Anomaly coefficients

$$\{\mathcal{C}_0^s, \mathcal{C}_1^s, \mathcal{C}_2^s\} = \left\{\frac{\Lambda_0^s}{e}, \frac{\Lambda_1^s}{T}, \frac{\Lambda_2^s}{T}\right\} = -s \frac{e}{4\pi^2 \hbar^2} \left\{\frac{1}{e}, 0, \frac{\pi^2}{3} k_B^2 T\right\}$$
$$\mu \gg k_B T$$

Different Chiral anomaly coefficients

$$\{\mathcal{C}_0^s, \mathcal{C}_1^s, \mathcal{C}_2^s\} = \left\{\frac{\Lambda_0^s}{e}, \frac{\Lambda_1^s}{T}, \frac{\Lambda_2^s}{T}\right\} = -s \frac{e}{4\pi^2 \hbar^2} \left\{\frac{1}{e}, 0, \frac{\pi^2}{3} k_B^2 T\right\}$$
$$\mu \gg k_B T$$

$$\{\Lambda_0^s, \Lambda_1^s, \Lambda_2^s\} \approx -s \frac{e}{4\pi^2 \hbar^2} \left\{ \mathcal{F}_0, \frac{1}{\beta} \mathcal{F}_1, \frac{1}{\beta^2} \mathcal{F}_2 \right\}$$

Local chemical potential and local temperature

$$\begin{pmatrix} \delta\mu^{s}\\ \delta T^{s}/T \end{pmatrix} = -\frac{\tau_{v}}{2} \begin{pmatrix} \mathcal{D}_{0}^{s} \ \mathcal{D}_{1}^{s}\\ \mathcal{D}_{1}^{s} \ \mathcal{D}_{2}^{s} \end{pmatrix}^{-1} \begin{pmatrix} \Lambda_{0}^{s} \ \Lambda_{1}^{s}\\ \Lambda_{1}^{s} \ \Lambda_{2}^{s} \end{pmatrix} \begin{pmatrix} e\mathbf{B} \cdot \mathbf{E}\\ \mathbf{B} \cdot \nabla T/T \end{pmatrix}$$
$$\begin{pmatrix} \begin{pmatrix} \mathcal{D}_{n}^{s}\\ \Lambda_{n}^{s} \end{pmatrix} = \int \frac{d\mathbf{k}}{(2\pi)^{3}} (\epsilon^{s} - \mu)^{n} (-\partial_{\bar{\epsilon}^{s}} f) \times \begin{pmatrix} 1 + e\mathbf{\Omega}^{s} \mathbf{B}/\hbar\\ \frac{e}{\hbar} (\bar{\mathbf{v}}^{s} \cdot \mathbf{\Omega}^{s}) \end{pmatrix}$$
$$\mu \gg k_{B}T$$
$$\begin{pmatrix} \\ \delta\mu^{s}\\ \delta T^{s}/T \end{pmatrix} = s \frac{\tau_{v} \hbar^{2} v_{F}^{3}}{\mu^{2}} \frac{1}{2\hbar} \begin{pmatrix} \frac{e^{2}}{2} & -\frac{ek_{B}}{\beta\mu} \frac{\pi^{2}}{3}\\ -\frac{e^{2}}{\mu} & \frac{e}{T} \end{pmatrix} \begin{pmatrix} \mathbf{E} \cdot \mathbf{B}\\ \nabla T \cdot \mathbf{B} \end{pmatrix}$$

FIG. 2. The temperature and chemical potential dependence of the chiral chemical potential $\delta\mu^s$ and chiral temperature $\delta\mu^s$ for s = 1 node. Panel (a) and (b) shows the electric field and temperature induced $\delta\mu$ respectively. Surprisingly they contribute in opposite fashion. Panel (c) and (d) shows electric field and temperature induced δT respectively. Here we have chosen $v_F = 2 \times 10^5$ m/s, $\tau_v = 10^{-9}$ s, B = 6 T, sample length $l = 50 \ \mu m$, $|\mathbf{E}| = 1 \ \text{mV}/l$, and $|\nabla T| = 350 \ \text{mK}/l$.

$$\begin{pmatrix} \mathbf{J}_{e}^{s} \\ \mathbf{J}_{Q}^{s} \end{pmatrix} = \frac{\mathbf{B}_{\tau_{v}}}{2} \begin{pmatrix} e\Lambda_{0}^{s} & e\Lambda_{1}^{s} \\ -\Lambda_{1}^{s} & -\Lambda_{2}^{s} \end{pmatrix} \mathcal{D}_{s}^{-1} \begin{pmatrix} \Lambda_{0}^{s} & \Lambda_{1}^{s} \\ \Lambda_{1}^{s} & \Lambda_{2}^{s} \end{pmatrix} \begin{pmatrix} e\mathbf{B} \cdot \mathbf{E} \\ \mathbf{B} \cdot \nabla \mathbf{T}/T \end{pmatrix}$$

$$\text{Lowest order in B} \qquad \mu \gg k_{B}T$$

$$polar angles of B$$

$$T \text{ dependence}$$

$$\begin{pmatrix} \sigma & \alpha \\ \bar{\alpha} & \bar{\kappa} \end{pmatrix}_{ij} = \frac{\tau_{v}}{2} \frac{e^{2} v_{F}^{3}}{8\pi^{2} \hbar} \frac{B^{2}}{\mu^{2}} \begin{pmatrix} e^{2} & \frac{2\pi^{2}}{3} \frac{ek_{B}}{\beta\mu} \\ \frac{2\pi^{2}}{3} \frac{ek_{B}T}{\beta\mu} & \frac{\pi^{2}}{3} k_{B}^{2}T \end{pmatrix} \mathcal{L}_{ij}(\theta, \phi)$$

$$\frac{\text{Angular dependence}}{\frac{1}{2} \sin^{2} \theta \sin^{2} \phi} \frac{1}{2} \sin^{2} \theta \sin^{2} \phi & \frac{1}{2} \sin^{2} \theta \sin\phi \\ \frac{1}{2} \sin^{2} \theta \cos\phi & \frac{1}{2} \sin^{2} \theta \sin\phi & \cos^{2} \theta \end{pmatrix}$$

The magneto-transport coefficients in WSM: B dependence

LETTER

Experimental signatures of the mixed axialgravitational anomaly in the Weyl semimetal NbP

Johannes Gooth^{1,2}, Anna C. Niemann^{1,3}, Tobias Meng⁴, Adolfo G. Grushin⁵, Karl Landsteiner⁶, Bernd Gotsmann², Fabian Menges², Marcus Schmidt⁷, Chandra Shekhar⁷, Vicky Süß⁷, Ruben Hühne³, Bernd Rellinghaus³, Claudia Felser⁷, Binghai Yan^{7,8} & Kornelius Nielsch^{1,3}

arXiv:1810.02300

Observation of an anomalous heat current in a Weyl fermion semimetal

Clemens Schindler,¹ Satya N. Guin,¹ Walter Schnelle,¹ Nitesh Kumar,¹ Chenguang Fu,¹ Horst Borrmann,¹ Chandra Shekhar,¹ Yang Zhang,¹ Yan Sun,¹ Claudia Felser,¹ Tobias Meng,² Adolfo G. Grushin,³ and Johannes Gooth^{1, *}

The magneto-transport coefficients in WSM

 $\mu > 0$

Temp. Dependence of longitudinal component of transport coefficients

- Huge enhancement of thermal conductivity (6x for 100 K)
- Seebeck coefficient reverses sign with B!
- Huge enhancement in thermo-electric conductivity + sign change with B!
- All these are a manifestation of chiral gravitational or mixed anomaly in WSM

25

Figure 3: Thermal conductivity κ_{zz} of Bi₈₉Sb₁₁ along the trigonal (*z*=<001>) direction.

Magneto-transport in the Landau quantization regime

$$\begin{aligned} j_s^e &= -e\left(\mu \mathcal{C}_0^s + k_B T \mathcal{C}_1^0\right) B ,\\ j_s^{\mathcal{E}} &= \left(\mu^2 \frac{\mathcal{C}_0^s}{2} + \mu k_B T \mathcal{C}_1^s + k_B^2 T^2 \mathcal{C}_2^s\right) B \end{aligned} \qquad \mathcal{C}_{\nu}^s &= \frac{e}{2\pi\hbar} \sum_n \int \frac{dk_z}{2\pi} v_{nz}^s \left(\frac{\epsilon_n^s - \mu}{k_B T}\right)^{\nu} \left(-\frac{\partial f_n^s}{\partial \epsilon_n^s}\right) \end{aligned}$$

Magneto-transport in the Landau quantization regime - II

Local equilibrium + relaxation time approximation

$$\partial_t g_n^s + \dot{\mathbf{k}}_n^s \cdot \boldsymbol{\nabla}_{\mathbf{k}} g_n^s + \dot{\mathbf{r}}_n^s \cdot \boldsymbol{\nabla}_{\mathbf{r}} g_n^s = -\frac{g_n^s - \bar{g}_n^s}{\tau} - \frac{\bar{g}_n^s - f_n^s}{\tau_v}$$

Particle density:

 $\mathcal{N}^s = \mathfrak{D} \sum_n \int \frac{dk_z}{2\pi} g_n^s$

$$\frac{\partial \mathcal{N}^s}{\partial t} + \boldsymbol{\nabla}_{\mathbf{r}} \cdot \mathbf{J}_n^s + eEB\mathcal{C}_0^s = -\frac{\mathcal{N}^s - \mathcal{N}_0^s}{\tau_v}$$
$$\boldsymbol{\nabla}_{\mathbf{r}} \cdot \mathbf{J}_n^s = k_B B \nabla T \mathcal{C}_1^s$$

Heat density:

 $Q^s = \mathfrak{D} \sum_n \int \frac{dk_z}{2\pi} \tilde{\epsilon}_n^s g_n^s$

$$\begin{aligned} \frac{\partial \mathcal{Q}^s}{\partial t} + \boldsymbol{\nabla}_{\mathbf{r}} \cdot \mathbf{J}_Q^s + eEB\mathcal{C}_1^s k_B T &= -\frac{\mathcal{Q}^s - \mathcal{Q}_0^s}{\tau_v} \\ \boldsymbol{\nabla}_{\mathbf{r}} \cdot \mathbf{J}_Q^s = k_B^2 T B \nabla T \mathcal{C}_2^s \end{aligned}$$

Longitudinal Magneto-transport

$$j_e^s = -e\sum_n \mathfrak{D} \int \frac{dk_z}{2\pi} v_{nz}^s g_n^s \qquad \qquad j_Q^s = \sum_n \mathfrak{D} \int \frac{dk_z}{2\pi} \tilde{\epsilon}_n^s v_{nz}^s g_n^s$$

$$\begin{pmatrix} j_e^s \\ j_Q^s \end{pmatrix} = \tau_v B^2 \begin{pmatrix} -e\mathcal{C}_0^s & -e\mathcal{C}_1^s \\ k_B T \mathcal{C}_1^s & k_B T \mathcal{C}_2^s \end{pmatrix} [\mathcal{D}^s]^{-1} \begin{pmatrix} \mathcal{C}_0^s & \mathcal{C}_1^s \\ \mathcal{C}_1^s & \mathcal{C}_2^s \end{pmatrix} \begin{pmatrix} eE \\ k_B \nabla T \end{pmatrix}$$

$$\mathcal{D}^{s} = \begin{pmatrix} \mathcal{D}_{0}^{s} & \mathcal{D}_{1}^{s} \\ \mathcal{D}_{1}^{s} & \mathcal{D}_{2}^{s} \end{pmatrix} \qquad \qquad \mathcal{D}_{\nu}^{s} = \sum_{n} \mathfrak{D} \int \frac{dk_{z}}{2\pi} \left(\frac{\epsilon_{n}^{s} - \mu}{k_{B}T} \right)^{\nu} \left(-\frac{\partial f_{n}^{s}}{\partial \epsilon_{n}^{s}} \right)$$

Longitudinal Magneto-transport

30

Quantum anomaly + magneto-transport in Weyl semimetals

- Explored chiral electrical thermal and gravitational anomaly in WSM
- Origin: chiral magnetic velocity in the semiclassical picture or chiral Landau levels (lowest) in the Landau quantization regime.
- Chiral charge and energy pumping leads to chemical potential and temperature imbalance in the Weyl nodes.
- This leads to distinct anomaly induced magneto-transport features (negative MR, huge enhancement of thermal conductivity, sign reversal of S, etc.)

arXiv:1909.07711

Thermal and gravitational chiral anomaly induced magneto-transport in Weyl semimetals

Kamal Das^{1,*} and Amit Agarwal^{1,†}

Longitudinal magneto-transport in Weyl semimetals due to chiral anomalies in quantizing magnetic field

Kamal Das,^{1, *} Sahil Kumar Singh,^{1, †} and Amit Agarwal^{1, ‡}

The answer motivates other questions:

- Is there similar physics if the Weyl nodes are away from "local equilibrium"? What role does B dependence of tau_v play ?
- Is there similar/different physics near the charge neutrality point in WSM ?
- How will these quantum anomalies coefficients manifest in optical experiments: photoconductivity, polarization rotation, pump-probe spectroscopy etc. Other unambiguous experimental signatures ?

