Multi-nucleon transfer and their effect on the mechanism of near barrier fusion reaction

Samit K Mandal Department of Physics & Astrophysics University of Delhi

Workshop on Advances in Nuclear Physics2011 from 7th September to 8th November, 2011 International Center, Goa

Nuclear Reaction

Why multinucleon transfer reaction at and near barrier energies ?

(a)

Near Barrier Transfer \longrightarrow Less no. of open channels

Theoretical Advantage

→ Low kinetic energy

Narrow Q-value distribution

- \rightarrow
- Angular Distribution are backward peak
- Small cross section
- \rightarrow
- Difficulty in identification of final

reaction products

Experimental Challenge

Successive & Pair transfer

R.Betts et al., PRL59(1987)978

C.L.Jiang et al., PRC57(1998)2393

H.Esbensen et al., PRC57(1998)2401

- Multinucleon transfer reaction around Coulomb barrier
 - Effect of multinucleon transfer channel on fusion cross section
- Effect of pairing correlation on multinucleon
 transfer reaction mechanism
- Relative importance of ground state and excited state transfer strength

Isotope	E _x (2 ⁺) (KeV)	B(E2) (e ² b ²)	E _x (3 ⁻) (KeV)	B(E3) (e ² b ³)
⁹⁰ Zr	2186.274	0.0610	2748	0.098
⁹⁴ Zr	918.75	0.066	2058	0.09
⁹⁶ Zr	1750.498	0.055	1897	0.202

System	+1n	+2n	+3n	+4n	-1p	-2p
$^{28}Si + ^{90}Zr$	-3.50	-2.20	-7.96	-8.37	-6.43	- 7.24
$^{28}Si + ^{94}Zr$	0.25	4.13	2.08	4.09	-4.78	-3.75

0 212

An inside view of the chamber.

Sunil Kalkal et al.

Odd - Even Effect !!

Ratio of Excited state to the Ground State Transfer evens

Sunil Kalkal et al.

Sunil Kalkal et al

A schematic of the couplings of the target-like nuclei.

Sunil Kalkal et al

FUSION EXCITATION FUNCTIONS

J.O. Newton et al Phys. Rev. C64 (2007) 064608

Wong's formula

 ΔE_{red} : difference in the value of E_{red} correspond to the cross section (~ 0.1mb) for various system

Sunil Kalkal et al. Phys. Rev. C81 (2010)044610

Summary

- Strong correlation between the transfer and fusion reactions.
- Sequential transfer of nucleons is an important mechanism of transfer in multi nucleon transfer reactions at above barrier energies.
- Indication of cold pair transfer at sub-barrier energies.
- Odd-even staggering is observed in multi neutron transfer case for ²⁸Si+^{90,94}Zr systems.
- ▶ The ratio of excited to ground state transfer is much more in ²⁸Si+⁹⁴Zr as compared to ²⁸Si+⁹⁰Zr.

Collaboration

University of Delhi, New Delhi

Inter University Accelerator Centre, New Delhi

Calicut University, Kerala

Panjab University, Chandigarh

UGC–DAE Consortium for Scientific Research, Kolkata

Saha Institute of Nuclear Physics, Kolkata

GSI, Darmstadt

Sunil Kalkal, Ritika Grag, Savi Goyal, Mansi Saxena, Davinder Siwal, Shashi Verma, Suresh Kumar & R. Singh

N. Madhavan, Akhil Jhingan, S. Nath, J. Gehlot, P. Sugathan, K. S. Golda, S. Muralithar & Gayatri Mohanto

E. Prasad

Rohit Sandal & Bivash Behera

A. K. Sinha

U. D. Pramanik

G. Eleonora & H. J. Wollersheim

Landscape of stable and unstable nuclei

THANKS