Symmetries in Nuclej - 直

ASHOK KUMAR JAIN
Inalan Institute of Technology Department of Physics

Roorkee

Outjne

JTlaxial Elljpsold

- Odd Multipole Shapes - Simplex
- Only two planes of symmetry
, Only one plane of symmetry
retrahedral and Triangular shapes
- Hilted Axis Rotation - Planar and Aplanar
- Magnetic Top and Chiral Rotation

Ellipsoid with D2 -symmetry - Asymmetric Top

- Full D2-symmetry :invariance with respect to the three rotations by 180 about each of the three principal axes.
- Finite gamma deformation $-K$ not a good quantum number

$$
\Phi_{M}^{I}\left(\gamma, \theta_{1}, \theta_{2}, \theta_{3}\right)=\sum_{K} g_{K}^{I}\left[D_{M K}^{I}+(-1)^{I} D_{M-K}^{I}\right]
$$

- $K=0$ not allowed. Only even integers $K=2,4, \ldots$ etc. allowed.
- A typical rotational band may have $\mathrm{I}=2,4,6, \ldots$. etc. as signature is still a good quantum number.

Odd-Multipole Shapes: Simplex quantum number

- Axial Symmetry - Y30 shapes only.
- violates the $R_{x}(\pi)$ and P symmetry, but preserves $R_{x} P$
- Two minima in octupole def energy $\overline{1}_{1}$ two degenerate states arise
- Denote $\boldsymbol{S}=\boldsymbol{P} \boldsymbol{R}_{x}$ which is conserved
-K=0 band satisfy: $\pi=S(-1)^{I}$

$$
\begin{aligned}
& I^{\pi}=0^{+}, 1^{-}, 2^{+}, 3^{-}, \ldots \ldots \ldots, s=+1 \\
& I^{\pi}=0^{-}, 1^{+}, 2^{-}, 3^{+}, \ldots \ldots, s=-1
\end{aligned}
$$

For $\mathrm{K} \neq 0$, the intrinsic states have a 2-fold Kramer's degeneracy and We obtain,

$$
\begin{aligned}
& I=\frac{1}{2}^{-}, \frac{3}{2}^{+}, \frac{5}{2}^{-}, \ldots \ldots \ldots \ldots s=-i \\
& I=\frac{1}{2}^{+}, \frac{3^{-}}{2}, \frac{5^{+}}{2}, \ldots \ldots \ldots \ldots \ldots, s=+i
\end{aligned}
$$

with the levels having $\mathrm{I} \geq \mathrm{K}$ allowed.

Regions of Octupole Deformation

For example, $\Delta l=3$ orbitals for both neutrons and protons come close together just beyond Pb-208

$I(1+1)$

Density Distribution has two planes of symmetry

- Axial symmetry is lost for $\mu \neq 0$
- Two independent planes of symmetry for μ even.
- Rotation about the long axis is possible.
-For

$$
Y_{3 \mu} \mu \neq 0, R_{x}(\pi)=1, \quad R_{y}(\pi) T=P
$$

Parity doublets of odd- or, even-angular momenta arise

$$
I=2^{ \pm}, 4^{ \pm}, \ldots . \quad I=1^{ \pm}, 3^{ \pm}, 5^{ \pm}
$$

Density distribution has one plane of symmetry

- Odd- μ components allowed
- Rotation is possible along the long axis as well as any one of the short axes
- Signature is not a good quantum number. Both even and oddspins will occur
- Invariance under space inversion lost; both parities will occur.
- Rotation about long axis

$$
I^{\pi}=4^{ \pm}, 5^{ \pm}, 6^{ \pm}, \ldots \ldots \ldots
$$

- Rotation about short axis

$$
I^{\pi}=\left(8^{+}\right)^{2},\left(9^{-}\right)^{2},\left(10^{+}\right)^{2}, \ldots
$$

- Chiral partners obtained

Tetrahedral and Triangle Symmetries

- Tetrahedral symmetry is related to Y - 32 term
- Large shell gaps at $\mathrm{N}, \mathrm{Z}=16,20,32,40,56,58,70,90-94$
- and at $\mathrm{N}=136 / 142$
- Tetrahedral Equilibrium shapes of the order of 0.13 for ${ }_{40}^{80} \mathrm{Zr}_{40}{ }_{40}^{108} \mathrm{Zr}_{68}{ }_{9}{ }^{160} \mathrm{Yb}_{40}, \quad{ }_{100}^{242} \mathrm{Fm}_{142}$
- Obey simplex symmetry, parity doublets formed

Triangular Shape corresponds to Y-33 def.

- Has only one plane of symmetry
- Possible in proton rich $\mathrm{N}=\mathrm{Z}$ nuclei

$$
{ }^{64} \mathrm{Ge},{ }^{68} \mathrm{Se},{ }^{72} \mathrm{Kr},{ }^{76} \mathrm{Sr},{ }^{80} \mathrm{Zr},{ }^{84} \mathrm{Mo}
$$

Tilted Axis Rotation

- Riemann - classical rotation about an axis different than principal axes possible in ellipsoids
- Planar Tilt - Axis of rotation in a principal plane
- P and $R_{y}(\pi) T$ are conserved
- Signature not conserved
- A band like $I^{\pi}=4^{+}, 5^{+}, 6^{+}, \ldots \ldots$. is observed
- Observed in Magnetic Rotation Bands

Anti-Magnetic Rotation

AMR band in ${ }^{105} \mathbf{C d}$

Aplanar Tilt:

- Only parity is conserved
- Four distinct situations, related by $R_{x}(\pi)$ and $R_{y}(\pi) T$ exist
- Band obtained:

$$
I^{\pi}=\left(4^{+}\right)^{2},\left(5^{+}\right)^{2},\left(6^{+}\right)^{2}, \ldots \ldots
$$

- Observed in Chiral Bands

Chiral Bands

- Aplanar Tilt in Tri-axial shape
- First visualised in Odd-Odd nuclei
- Odd-proton aligned along the short axis
- Odd-neutron aligned along the long axis
- Rotational contribution along the intermediate axis
- Resultant of the three ang mom is out of the three planes
- Parity is conserved but $R y(\pi) T$ is broken
- Two pairs of identical $\Delta l=1$ bands having the same parity
- Tunneling between the right- and the left-handed system gives rise to a splitting between the levels.

Nd-135, Z=60, N=75
$2 \pi(h 11 / 2), 1 \mathrm{v}(\mathrm{h} 11 / 2)$

Zhu et al, 2003, PRL
91,2003,132501

Bibiliography

General References:

- A. Bohr and B.R. Mottelson, Nuclear Structure, Vol.1, Single Particle Motion, and Vol.2, Nuclear Deformations (Benjamin, 1969,1975).
- M.K. Pal, Theory of Nuclear Structure, (East-West Press,1982).
- P. Ring and P. Schuck, The Nuclear Many Body Problem, (Springer, 1980).
- K. Heyde, Basic Ideas and Concepts in Nuclear Physics, $2^{\text {nd }}$ Edition (IOP Publishing, 1999).
- L.D. Landau and E.M. Lifshitz, Quantum Mechanics, Vol. 3 of Course of Theoretical Physics (Pergamon Press, 1956).
- Table of Isotopes, Eighth Edition, Ed. Firestone et al. (Wiley, 1996).

Articles on Symmetries:

- W. Greiner and J.A. Maruhn, Nuclear Models (Springer, 1989).
- J. Dobaczewski, J. Dudek, S.G. Rohozinski, and T.R. Werner, Phys. Rev. C62, 014310, and 014311 (2000).
- P. Van Isacker, Rep. Prog. Phys. 62, 1661 (1999).
- S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001).

Refelction Asymmetric Shapes:

- P.A. Butler and W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996).
- A.K. Jain, R.K. Sheline, P.C. Sood, and K. Jain, Rev. Mod. Phys. 62, 393 (1990).
- R.K. Sheline, A.K. Jain, K. Jain, I. Ragnarsson, Phys. Lett. B219, 47 (1989).
- J. Gasparo, G. Ardisson, V. Barci and R.K. Sheilne, Phys. Rev. C62, 064305 (2000).

Tetrahedral and Triangular Shapes:

- X. Li and J. Dudek, Phys. Rev. C49, R1250 (1994).
-S. Takami, K. Yabana, and M. Matsuo, Phys. Lett. B431, 242 (1998).
- M. Yamagami, K. Matsuyanagi, and M. Matsuo, Nucl. Phys. A672, 123 (2000).

Magnetic Rotation:

- S. Frauendorf, Nucl. Phys. A557, 259c (1993).
- R.M. Clark and A.O. Macchiavelli, Annu. Rev. Nucl. Part. Sci. 50, 1 (2000).
- Amita, A.K. Jain, and B. Singh, At. Data \& Nucl. Data Tables 74, 283 (2000); revised version under publication (2003).
- A.K. Jain and Amita, Pramana-J. Phys. 57, 611 (2001).
- S. Lakshmi, H.C. Jain, P.K. Joshi, A.K. Jain and S.S. Malik, under publication.

Chiral Bands:

- V.I. Dimitrov, S. Frauendorf, and F. Donau, Phys. Rev. Lett. 84, 5732 (2000).
- D.J. Hartley et al., Phys. Rev. C64, 031304(R) (2001).
- S. Zhu et al., Phys. Rev. Lett. 91, 132501 (2003).

Critical Point Symmetries:
-R.F. Casten and N.V. Zamfir, Phys. Rev. Lett. 87, 052503 (2001).

- F. lachello, Phys. Rev. Lett. 91, 132502 (2003).

