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Outline

e Basics concepts of symmetries in guantum
systems

e Unitary transformations, degeneracy and
multiplets

* Discrete symmetries in nuclei
* Consequences of discrete symmetries
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How the two are linked is difficult to define
Yet, both are intimately linked
Also linked are,
Conserved quantities ﬁ Symmetries

Quantities which remain invariant play an
important role in defining the properties of a
system

This is also the origin of quantum numbers

14 Nov 2011 ANUP-2011, TIFR School, Goa



Conserved quantities

« Some quantities remain unchanged with the passage of time

« Many conserved quantities are related to Global symmetries

e Energy, which is linked to invariance under time translation

e Linear momentum, which is linked to invariance under space translation
e Angular momentum, which is linked to invariance under rotation in space

« These are all continuous symmetries of space-time, and are valid in both
the classical and the quantum world.

Theorem of Emmy Noether
Each continuous symmetry is related to a conserved quantity

14 Nov 2011 ANUP-2011, TIFR School, Goa
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Unitary Transformation, Degeneracy and
Multiplets
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A useful unitary transformation arising from the
Hamiltonian H is the time evolution operator

U =exp(—iHt/ 7)
* An operator Q evolves from time t=0 to t as,

UTQU — Qo

While a state |v(t)) evolves as

(1) =U@)|y(t=0)

School cum Workshop on Yrast and Near-

26 Oct 2009
Yrast Spectrosco py



e If Q isconservedi.e.dQ/dt=0 , we have
[Q, H]:QH —HQ =0
If the symmetry transformations represented by

Q is unitary then Q"HQ = H ,and hamiltonian
remains invariant.

 Asan example, a very useful group of
transformations which leaves the hamiltonian
invariant is rotation, represented by the

rotation operator. It generator is the angular
momentum operator L or, J.



Rotation Group

Rotation about z-axis can be represented by
¥ =Y =(1-i0], | )Y
It is a Lie group whose algebra is defined by
[Jk,J, ] =lg,,J,,

Casimir operator, which commutes with all the
generators of the group, is

J2=37+3;+7;
The states | j.m) are simultaneous eigenstates
of J?and J,.



Degeneracy and Multiplets

If HY =EY then H¥Y =H(1+i0J),)¥ =EY¥Y
Thus ¥ and W' are both simultaneous
eigenstates with the same eigenvalue.

A degeneracy arises in the m-substates.

An energy eigenstate can have n-fold
degeneracy if n-fold rotation of ¥ in some
space leaves it invariant.

Degeneracy is lifted if the corresponding
symmetry is broken and a multiplet arises



Example: Transition from

Shell Model to Nilsson
Model

J is a good quantum
number for spherically
symmetric potential. Even
a small deformation breaks
the symmetry. If the
deformation has an axial
symmetry about the z-axis,
J, Is the only conserved
guantity. The (2j+1) fold
degeneracy is lifted and
multiplet arises. Therefore,
the quantum number Q is
used to label the states.
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The basic nucleon-nucleon interaction must
exhibit invariance under translation, rotation,
reflection in space and time etc.

THE MEAN FIELD EMERGING FROM A
COLLECTION OF NUCLEONS IN A
CONFIGURATION MAY BREAK ONE OR MORE
OF THESE SYMMETRIES

14 Nov 2011 ANUP-2011, TIFR School, Goa 10



Breaking of spherical symmetry

* Rotational motion becomes possible

e Rotational Bands built on intrinsic states make
an appearance

* Therefore, patterns of rotational bands are
typical of a given type of symmetry

* A given rotational band can be labeled by the
conserved quantum numbers

14 Nov 2011 ANUP-2011, TIFR School, Goa 11



Patterns in spectra

PATTERN RECOGNITION
IS an important step towards
IDENTIFICATION OF
SYMMETRIES
or,
BREAKING OF SYMMETRIES
EXAMPLE:
Spectrum of 168Er

14 Nov 2011 ANUP-2011, TIFR School, Goa 12
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Symmetries
in the quantum world lead to discreteness in
conserved quantities and are local

e Point Group Symmetries in Crystal structure
* Space Inversion — Parity
 Time Reversal — Kramer’s Degeneracy

e Rotation by any angle about the symmetry
axis of a spheroid

* Rotation by 180 about an axis normal to the
symmetry axis of a spheroid

* Reflection about a plane of a pear shape

14 Nov 2011 ANUP-2011, TIFR School, Goa
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NUCLEAR SHAPES

Radius vector of an arbitrarily deformed surface

R(O,9) =R,[1+ Zaz,yY */w (0,9)]

 Different spherical harmonics have different
geometric symmetries and may be present in the
mean field of a nucleus.

 Most common is the A = 2 quadrupole term.
Higher order terms also occur in specific
situations in many nuclel.

14 Nov 2011 ANUP-2011, TIFR School, Goa 15



* Empirical evidence exists for the
* quadrupole,

* quadrupole + hexadecapole,

e quadrupole + octupole.

* While axial shapes are most common,
evidence exists for non-axial shapes
also.

14 Nov 2011 ANUP-2011, TIFR School, Goa



" Axial and Reflection symmetry

 Most well known result for the axially
symmetric e-e nuclei is the K=0 assighment to
the ground rotational band — since no rotation
is possible about axis of symmetry

e Additional restriction for the quadrupole axial
symmetric shapes is the R,(1t) symmetry which
forbids odd-| states. This is evident in the
observation of 1=0,2,4,...levels in a K=0 band.

14 Nov 2011 ANUP-2011, TIFR School, Goa 17



Discrete Symmetries in Nuclei

* Most commonly encountered discrete symmetries in
nuclel are

Parity P

Rotation by 7 about the body fixed X, y, z axes,
R (M), R, (T,), R, ()

Time reversal T

TR, (m), TR, (m), TR, (m).

These are all two fold discrete symmetries, and their
breaking causes a doubling of states.

See Dobaczewski et al (Phys. Rev. C62, 014310, and 014311 (2000))
for a complete classification

a bk wWwbdhE
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Simple rules to work out the consequences of these
symmetries

1. When P is broken, we observe a parity doubling of states. A sequence
like 4+, 5+, 6+, ... turns into 44, 54 64 ... . (in e-e nuclei)

2. When R, (n) is broken, states of both the signatures occur. The two
sequences like 1/2, 5/2,...etc. and 3/2, 7/2, ...etc. having different
signatures, merge into one sequence like 1/2, 3/2, 5/2, 7/2 ... etc. (in
odd-A nuclei)

3. When R, (rt) T is broken, a doubling of states of the allowed angular
momentum occurs. A sequence like I, I+2, I+4, ... etc. becomes 2(l),
2(1+2), 2(1+4), ..., each state now occurring twice (chiral doubling).

4. When P=R, (), the two signature partners will have different parity.
Thus states of alternate parity occur. We obtain a sequence like 2+, 3-,
4+, 5- ... etc.

14 Nov 2011 ANUP-2011, TIFR School, Goa
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Ry(m) T=1,Rs(m) =1 Ry(m) T#1, Ry(m) =1
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Parity and Signature

Total wave-function is a product of intrinsic and
rotational part | IMK) = D}, 7« -

Information of the parity of a state resides in the
intrinsic part and not the rotational part.

Besides axial symmetry, a spheroid also has a
reflection symmetry in the 1-2 plane, which is
represented by R, () . It operates on the intrinsic
and the rotational part differently and invariance
of the wave-function leads to the signature
guantum number.

For K=0 intrinsic states, Ru(7) k-0 =T ¥, F=%L.



Intrinsic Wavefunction and its consequences

The total wavefunction

| |
WYk = XoDuk
where X g is the intrinsic part. Axial symmetry is assumed so that K = Q)

The total wavefunction must remain invariant underRX (72') and Re (72')

acting on internal and collective coordinates with the condition that
Ry (7) = R, (7)

Since j is not a good qg.n.,

Ak = ZCJZJK
]



For K=0, the following holds

R, () x¥«_0o =T Xk_o>

2 2
I:ax (ﬂ)ZK:O =T ZKzO’
so that r'2 — 7] and r — +1

One may also write these expressions as

R (7)) ¥ ko = e_imJXZKzo — e_imZKzo

which leads to values a=0 and a=1 correspondingtor=+1and r =-1.

Both aand r are termed as the signature quantum number.



Signature and angular momentum get connected by the relation
| AN RVA
R (7)Dyk_o =€ " Yy =D Yy,

Therefore, |

' = (—1) ,

and the K=0 band can be classified as
a=0,r=+1 1=0, 2 4,.....
a=1, r=-1 1=1365,......

The GSB of even-even nuclei is the best example of r=+1 signature.

A K=0 band in an odd-odd nucleus has both r=+1 and r=-1 signature.



For K # 0, the intrinsic states are two fold degenerate because of Rx (71')

/\
symmetry. Note that R x (sz)and time-reversal T have the same effect on the
wave-function. The time-reversed state K has the negative value

ZK o Rx ZK
X L |+ K
and XK _e'ﬂ] Ak _Z(_l " X
J
The rotational wave function changes as
—Ii7 | . | +K |
R DI\/IK =€ DI\/IK R (_1) DI\/I—

so that a rotationally invariant wave function may be constructed as
1

21 +1)\2 N
- [;(KDI:/IK_I_( 1)| KZKDI:/I K]
16777

of jz, so that

LPI\I/IK —



For odd-A nuclei, RZZK — ( 1) 2] ZK 2j odd.

Now, RX p— e_lﬂjx — e_lm

and, R — e_iﬂl

together with, R_l R — 1 lead us to the classification
1 5 9 _

e . T gaemmemnns , O = 1 , FrF — —1 .
2 2 2 2

_ S 7 11 o :_1, r = —+1
2 ) 2 ’ 2 yu e y 2

In general,

| = (o + even number).
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mConsequences of the signature q.n.

For K=0 bands, r=+1 corresponds to 1=0,2,4,... and r=-1
corresponds to 1=1,3,5,...

Only r=+1 sequence is seen in even-even nuclei, while
both r=t1 are observed in odd-odd nuclei.

However, its full advantage is seen in odd-A (and odd-
odd nuclei also) nuclei.

In odd-A, K=1/2 bands, the decoupling term plays the
role of splitting the two signatures of a band.

Sign and value of the decoupling parameter decides
the odd-even splitting

For high-j states, the splitting could be so large that the
unfavored signature is not seen at all.



Fixed point structure from SCM

14 Nov 2011
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Fig. 1. Schematic diagram showing the projections of g-cylindrical
parabolae and j sphere constituting the invariant region for
we/20j < 1. The j-space is seen to be divided into four distinct
regions - three arising from the separatrix and one from the cnit-
ical parabola (K = 0). The four fixed points are shown by the
labels a, b and c+.
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