Role of Symmetries in Rotational Spectra A.K. Jain

Department of Physics Indian Institute of rechnology- Roorkee

Outline

- Basics concepts of symmetries in quantum systems
- Unitary transformations, degeneracy and multiplets
- Discrete symmetries in nuclei
- Consequences of discrete symmetries

Beauty \longleftrightarrow Symmetry

How the two are linked is difficult to define
Yet, both are intimately linked
Also linked are,
Conserved quantities \longrightarrow Symmetries Quantities which remain invariant play an important role in defining the properties of a system
This is also the origin of quantum numbers

Conserved quantities

- Some quantities remain unchanged with the passage of time
- Many conserved quantities are related to Global symmetries
- Energy, which is linked to invariance under time translation
- Linear momentum, which is linked to invariance under space translation
- Angular momentum, which is linked to invariance under rotation in space
- These are all continuous symmetries of space-time, and are valid in both the classical and the quantum world.

Theorem of Emmy Noether

Each continuous symmetry is related to a conserved quantity

www.EmmyNoether.com

Unitary Transformation, Degeneracy and

Multiplets

- A useful unitary transformation arising from the Hamiltonian H is the time evolution operator

$$
U=\exp (-i H t / \hbar)
$$

- An operator Q evolves from time $t=0$ to t as,

$$
U^{\dagger} Q U=Q_{0}
$$

- While a state $|\psi(t)\rangle$ evolves as

$$
|\psi(t)\rangle=U(t)|\psi(t=0)\rangle
$$

- If Q is conserved i.e. $d Q / d t=0$, we have

$$
[Q, H]=Q H-H Q=0
$$

If the symmetry transformations represented by
Q is unitary then $Q^{\dagger} H Q=H$, and hamiltonian remains invariant.

- As an example, a very useful group of transformations which leaves the hamiltonian invariant is rotation, represented by the rotation operator. It generator is the angular momentum operator L or, J.

Rotation Group

- Rotation about z-axis can be represented by

$$
\Psi^{\prime}=e^{-i \theta j_{z} / \hbar} \Psi=\left(1-i \theta J_{z} / \hbar\right) \Psi
$$

- It is a Lie group whose algebra is defined by

$$
\left[J_{k}, J_{l}\right]=i \varepsilon_{k l m} J_{m}
$$

- Casimir operator, which commutes with all the generators of the group, is

$$
J^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}
$$

- The states $|j, m\rangle$ are simultaneous eigenstates of J^{2} and J_{z}.

Degeneracy and Multiplets

- If $H \Psi=E \Psi$ then $H \Psi^{\prime}=H\left(1+i \theta J_{z}\right) \Psi=E \Psi^{\prime}$ Thus Ψ and $\Psi '$ are both simultaneous eigenstates with the same eigenvalue.
- A degeneracy arises in the m-substates.
- An energy eigenstate can have n-fold degeneracy if n-fold rotation of Ψ in some space leaves it invariant.
- Degeneracy is lifted if the corresponding symmetry is broken and a multiplet arises

Example: Transition from

Shell Model to Nilsson Model

J is a good quantum number for spherically symmetric potential. Even a small deformation breaks the symmetry. If the deformation has an axial symmetry about the z-axis, J_{z} is the only conserved quantity. The $(2 j+1)$ fold degeneracy is lifted and

deformation multiplet arises. Therefore, the quantum number Ω is used to label the states.

The basic nucleon-nucleon interaction must

 exhibit invariance under translation, rotation, reflection in space and time etc.THE MEAN FIELD EMERGING FROM A
COLLECTION OF NUCLEONS IN A CONFIGURATION MAY BREAK ONE OR MORE OF THESE SYMMETRIES

Breaking of spherical symmetry

- Rotational motion becomes possible
- Rotational Bands built on intrinsic states make an appearance
- Therefore, patterns of rotational bands are typical of a given type of symmetry
- A given rotational band can be labeled by the conserved quantum numbers

Patterns in spectra

PATTERN RECOGNITION

is an important step towards
IDENTIFICATION OF
SYMMETRIES
or,
BREAKING OF SYMMETRIES EXAMPLE:
Spectrum of 168Er

Symmetries

in the quantum world lead to discreteness in conserved quantities and are local

- Point Group Symmetries in Crystal structure
- Space Inversion - Parity
- Time Reversal - Kramer's Degeneracy
- Rotation by any angle about the symmetry axis of a spheroid
- Rotation by 180 about an axis normal to the symmetry axis of a spheroid
- Reflection about a plane of a pear shape

NUCLEAR SHAPES

Radius vector of an arbitrarily deformed surface

$$
R(\theta, \varphi)=R_{0}\left[1+\sum_{\lambda, \mu} \alpha_{\lambda, \mu} Y_{\lambda \mu}^{*}(\theta, \varphi)\right]
$$

- Different spherical harmonics have different geometric symmetries and may be present in the mean field of a nucleus.
- Most common is the $\lambda=2$ quadrupole term. Higher order terms also occur in specific situations in many nuclei.
- Empirical evidence exists for the
- quadrupole,
- quadrupole + hexadecapole,
- quadrupole + octupole.
- While axial shapes are most common, evidence exists for non-axial shapes also.

Axial and Reflection symmetry

- Most well known result for the axially symmetric e-e nuclei is the $\mathrm{K}=0$ assignment to the ground rotational band - since no rotation is possible about axis of symmetry
- Additional restriction for the quadrupole axial symmetric shapes is the $R_{1}(\pi)$ symmetry which forbids odd-I states. This is evident in the observation of $\mathrm{I}=0,2,4, \ldots$ levels in a $\mathrm{K}=0$ band.

Discrete Symmetries in Nuclei

- Most commonly encountered discrete symmetries in nuclei are

1. Parity P
2. Rotation by π about the body fixed x, y, z axes,
3. $R_{x}(\pi), R_{y}(\pi),, R_{z}(\pi)$
4. Time reversal T
5. $T R_{x}(\pi), T R_{y}(\pi), T R_{z}(\pi)$.

- These are all two fold discrete symmetries, and their breaking causes a doubling of states.
See Dobaczewski et al (Phys. Rev. C62, 014310, and 014311 (2000)) for a complete classification

Simple rules to work out the consequences of these symmetries

1. When P is broken, we observe a parity doubling of states. A sequence like $4+, 5+, 6+$, ... turns into $4 \pm, 5 \pm, 6 \pm$, (in e-e nuclei)
2. When $R_{X}(\pi)$ is broken, states of both the signatures occur. The two sequences like $1 / 2,5 / 2$,...etc. and $3 / 2,7 / 2, \ldots$ etc. having different signatures, merge into one sequence like 1/2, 3/2, 5/2, $7 / 2$... etc. (in odd-A nuclei)
3. When $R_{Y}(\pi) T$ is broken, a doubling of states of the allowed angular momentum occurs. A sequence like $I, I+2, I+4, \ldots$ etc. becomes 2(I), $2(I+2), 2(I+4), . .$. , each state now occurring twice (chiral doubling).
4. When $P=R_{X}(\pi)$, the two signature partners will have different parity. Thus states of alternate parity occur. We obtain a sequence like $2+, 3$-, $4+$, 5- ... etc.
4^{π}
3^{π}

$$
P=1
$$

\qquad
2^{π}

$$
\pi=+1 \text { or, }-1
$$

$P \neq 1$
\qquad
\qquad
$3^{ \pm}$
$2^{ \pm}$ \qquad

RULE NO. 1

$R_{X}(\pi)=1$
8^{π}

2^{π} \qquad

$$
\pi=+1 \text { or, }-1
$$

$$
\mathbf{R}_{\mathrm{x}}(\pi) \neq 1
$$

\qquad
5^{π} \qquad
\qquad
3^{π}
2^{π} \qquad

RULE NO. 2

$\mathbf{R}_{\mathbf{y}}(\pi) \mathrm{T}=1, \mathbf{R}_{\mathrm{x}}(\pi)=1$
8^{+} \qquad
\qquad
2^{+}
\qquad
2^{+}

$$
\mathbf{R}_{\mathrm{y}}(\pi) \mathrm{T} \neq 1, \mathbf{R}_{\mathrm{x}}(\pi)=1
$$

\longrightarrow

RULE NO. 3

$$
\mathbf{R}_{\mathrm{y}}(\pi) \mathrm{T}=1, \mathbf{R}_{\mathrm{x}}(\pi) \neq 1
$$

$$
5^{+}
$$

\qquad
\qquad
2^{+} \qquad

$$
\mathbf{R}_{\mathrm{y}}(\pi) \mathrm{T} \neq 1, \mathbf{R}_{\mathrm{x}}(\pi) \neq 1
$$

$$
5^{+} \square
$$

$$
4^{+} \square
$$

$$
\longrightarrow
$$

$$
3^{+} \square
$$

$$
2^{+} \square
$$

RULE NO. 3

$$
P=1, R_{x}(\pi)=1
$$

\qquad
6^{+}

$$
\mathbf{P}=\mathbf{R}_{\mathbf{x}}(\pi)
$$

\qquad
5
\qquad
\longrightarrow
\qquad
2^{+}
\qquad
2^{+}

RULE NO. 4

Parity and Signature

- Total wave-function is a product of intrinsic and rotational part $|I M K\rangle=D_{M K}^{I} \chi_{K}$.
- Information of the parity of a state resides in the intrinsic part and not the rotational part.
- Besides axial symmetry, a spheroid also has a reflection symmetrv in the 1-2 plane, which is represented by $R_{1}(\pi)$. It operates on the intrinsic and the rotational part differently and invariance of the wave-function leads to the signature quantum number.
- For $\mathrm{K}=0$ intrinsic states, $R_{1}(\pi) \chi_{K=0}=r \chi_{K=0,} r= \pm 1$.

Intrinsic Wavefunction and its consequences

The total wavefunction

$$
\Psi_{M K}^{I}=\mathcal{X}_{\Omega} D_{M K}^{I}
$$

where χ_{Ω} is the intrinsic part. Axial symmetry is assumed so that $K=\Omega$ The total wavefunction must remain invariant under $R_{x}(\pi)$ and $R_{e}(\pi)$ acting on internal and collective coordinates with the condition that

$$
R_{x}(\pi)=R_{e}(\pi)
$$

Since j is not a good q.n.,

$$
\chi_{K}=\sum_{J} C_{J} \chi_{J K}
$$

For $K=0$, the following holds

$$
\begin{aligned}
& \boldsymbol{R}_{x}(\pi) \chi_{K=0}=r \chi_{K=0}, \\
& R_{x}^{2}(\pi) \chi_{K=0}=r^{2} \chi_{K=0},
\end{aligned}
$$

so that $\boldsymbol{r}^{2}=\mathbf{1}$ and $\quad r= \pm \mathbf{1}$
One may also write these expressions as
$R_{x}(\pi) \chi_{K=0}=e^{-i \pi J_{x}} \chi_{K=0}=e^{-i \pi \alpha} \chi_{K=0}$
which leads to values $\alpha=0$ and $\alpha=1$ corresponding to $r=+1$ and $r=-1$.
Both α and r are termed as the signature quantum number.

Signature and angular momentum get connected by the relation

$$
R_{e}(\pi) D_{M K=0}^{I}=e^{-i \pi I} Y_{M}^{I}=(-1)^{I} Y_{M}^{I}
$$

Therefore,

$$
r=(-1)^{I}
$$

and the $\mathrm{K}=0$ band can be classified as

$$
\begin{array}{ll}
\alpha=0, r=+1, & I=0,2,4, \ldots \ldots \\
\alpha=1, & r=-1, \\
I=1,3,5, \ldots \ldots .
\end{array}
$$

The GSB of even-even nuclei is the best example of $r=+1$ signature.
$A K=0$ band in an odd-odd nucleus has both $r=+1$ and $r=-1$ signature.

For $K \neq 0$, the intrinsic states are two fold degenerate because of $\hat{R}_{x}(\pi)$ symmetry. Note that $\hat{\boldsymbol{R}}_{x}(\pi)$ and time-reversal T have the same effect on the wave-function. The time-reversed state K has the negative value
of j_{z}, so that

$$
\begin{gathered}
\chi_{\bar{K}}=R_{x}^{-1} \chi_{K} \\
\text { and } \quad \begin{array}{l}
\text { so that } \\
\\
\chi_{\bar{K}}=e^{i \pi j_{x}} \cdot \chi_{K}=\sum_{j}(-1)^{j+K} \cdot \chi_{j-K}
\end{array}
\end{gathered}
$$

The rotational wave function changes as

$$
R_{e} D_{M K}^{I}=e^{-i \pi l} D_{M K}^{I}=(-1)^{I+K} D_{M-K}^{I}
$$

so that a rotationally invariant wave function may be constructed as

$$
\Psi_{M K}^{I}=\left(\frac{2 I+1}{16 \pi^{2}}\right)^{\frac{1}{2}}\left[\chi_{K} D_{M K}^{I}+(-1)^{I+K} \chi_{\bar{K}} D_{M-K}^{I}\right]
$$

$$
\begin{aligned}
& \text { For odd-A nuclei, } \quad R_{x}^{2} \chi_{K}=(-1)^{2 j} \chi_{K},{ }^{2 j \text { odd. }} \\
& \text { Now, } \quad R_{x}=e^{-i \pi j_{x}}=e^{-i \pi \alpha} \\
& \text { and, } \quad R_{e}=e^{-i \pi I} \\
& \text { together with, } \quad R_{x}^{-1} R_{e}=1 \text { lead us to the classification } \\
& I=\frac{1}{2}, \frac{5}{2}, \frac{9}{2}, \ldots \ldots \ldots, \quad \alpha=\frac{1}{2}, \quad r=-i \\
& I=\frac{3}{2}, \frac{7}{2}, \frac{11}{2}, \ldots \ldots \ldots, \alpha=-\frac{1}{2}, \quad r=+i \\
& \quad \text { In general, } \quad \mathrm{I}=(\alpha+\text { even number }) \text {. }
\end{aligned}
$$

${ }_{66}^{155} \mathrm{Dy}$

Consequences of the signature q.n.

- For $K=0$ bands, $r=+1$ corresponds to $\mathrm{I}=0,2,4, \ldots$ and $r=-1$ corresponds to $\mathrm{I}=1,3,5, \ldots$
- Only $r=+1$ sequence is seen in even-even nuclei, while both $r= \pm 1$ are observed in odd-odd nuclei.
- However, its full advantage is seen in odd-A (and oddodd nuclei also) nuclei.
- In odd-A, K=1/2 bands, the decoupling term plays the role of splitting the two signatures of a band.
- Sign and value of the decoupling parameter decides the odd-even splitting
- For high-j states, the splitting could be so large that the unfavored signature is not seen at all.

Fixed point structure from SCM

Fig. 1. Schematic diagram showing the projections of ε-cylindrical parabolae and j-sphere constituting the invariant region for $\omega_{c} / 2 Q j<1$. The j-space is seen to be divided into four distinct regions - three arising from the separatrix and one from the critical parabola ($K=0$). The four fixed points are shown by the labels a, b and $c_{ \pm}$.

