Measuring the CMB from Chile: a look ahead.

L. Page

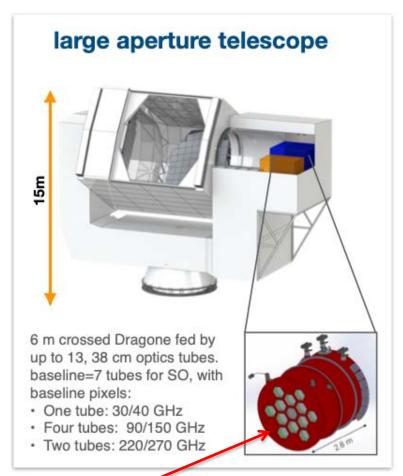
ICTS, Bengaluru, Jan 2019

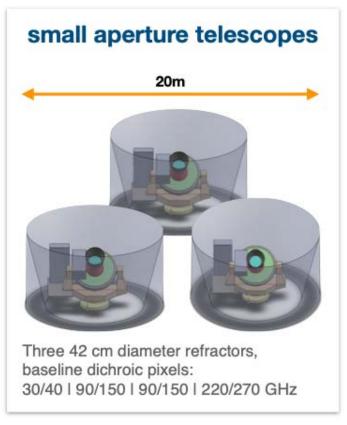
ACT/SO neighborhood

Status of activities

- ACT operating. Now has 11 seasons of data taking and 3rd generation of camera, "AdvACT."
- Polarbear/Simons array now has 3 telescopes with PB-2 receivers coming on line.
- ABS is done.
- CLASS has been taking data at 40 GHz since 2016 and recently installed a 90 GHz mount and receiver.

Coming soon...


- SO will deploy a 6 m LAT, "Large Aperture Telescope" following the Niemack design (AO, 2016)
- SO will deploy 3-4 SATs, "Small Aperture Telescopes," for B-mode searches.
- CCAT-prime will deploy the same telescope design as SO but at a higher altitude to focus on the CMB and higher frequencies.
- CLASS will finish deploying full suite of receivers at 40,90,150 & 220 GHz.
- Polarbear/Simons Array will finish deploying two more new receivers.


Totals: 3 6m telescopes, 3 2.5m telescopes and 7 ~1/2 m telescopes

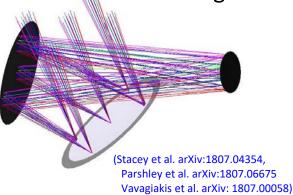
Simons Observatory

fully funded (Simons Foundation), first light: 2021

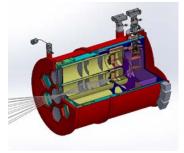
location: Atacama (Chile), 60k detectors

Optics tube: ~5000

detectors


Spokespeople: M₅ Devlin, **A. Lee**, S. Staggs. Director: B. Keating

CCAT-Prime


6 meter aperture extreme field-of-view sub-millimeter telescope on Cerro Chajnantor at 5600m, Chile

Measurements: Galaxy clusters and CMB polarization, C+ intensity mapping, Dusty galaxies, Galactic emission lines

~8 degree diffraction-limited FOV at 2mm, and ~4 degree at 1mm



Prime-Cam cryostat

Surface accuracy ~10 um at an outstanding sub-mm site with access to 350um – 3mm

Telescope funded, first light 2021

CLASS

Cosmology Large Angular Scale Surveyor

fully funded (NSF), first light: 2016 (40 GHz), 2018 (90 GHz)

location: Atacama (Chile), 5k detectors

2nd to be deployed in 2020

to be deployed in 2019

4 telescopes: 40 GHz, 2 x 90 GHz, 150/220 GHz (dichroic)

 $f_{\text{sky}} \sim 75\%$, 2 < ℓ < 200

Rapid front-end modulation alleviates need for large-scale filtering allowing access to lowest multipoles

T

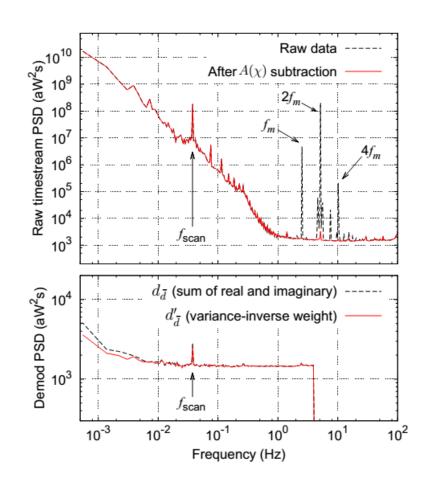
Large-scale *B*- and *E*-mode experiment

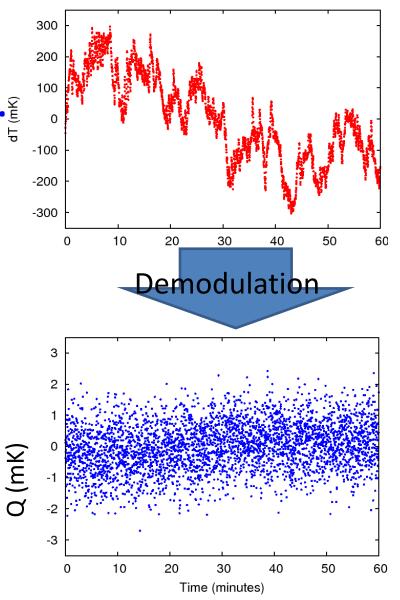
 \sim sample variance limited ($f_{sky} = 75\%$)

Large angular scale polarization science: GWs and optical depth (τ)

Atmospheric fluctuations are considerable. Need to modulate polarization to get above the atmospheric 1/f. Less of an issue for SP.

ABS showed that rapid modulation with a spinning HWP is effective (Kusaka et al. 2014).


PB/SA will use a spinning cryogenic (50K) HWP. An ambient temp. version was demonstrated (Takakura et al. 2017).


CLASS uses an ambient VPM to modulate between Stokes Q and V. It is unique in its search for circular polarization (Harrington et al. 2018).

SO will use a PB/SA style spinning cryogenic HWP.

A spinning HWP is also beneficial for reducing the effects of beam-related systematic errors and detector 1/f. The LiteBIRD satellite plans to use them!

Rapid modulation of incident polarization signal.

Data stable on time scales of 500-1000 seconds (1-2 mHz)

Kusaka et al, RSI 85, 024501 (2014)

Large available sky coverage from Chile is a benefit for B-mode searches.

For four thousand deg², f=0.1, you do not need to de-lens to get to r<0.002. SO SATs will cover this area.

More low emissions regions available than from SP.

CLASS to cover f=0.75 of sky to measure τ . Lower ell easier at lower frequencies.

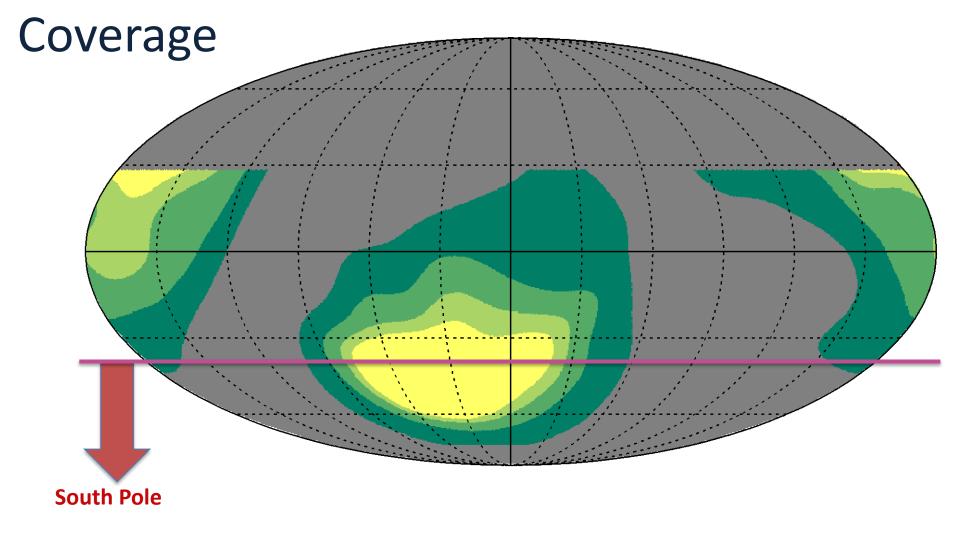


FIG. 3: Sky masks used in the analysis, corresponding to the cleanest 2000, 4000, 8000 and 16000 deg² of the sky accessible from Chile in terms of foreground contamination.

Current ACT Coverage

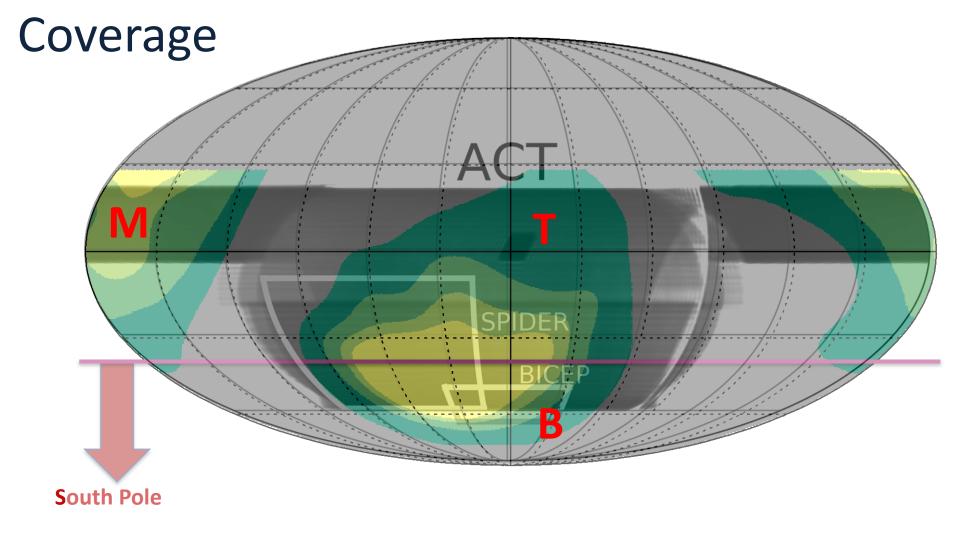
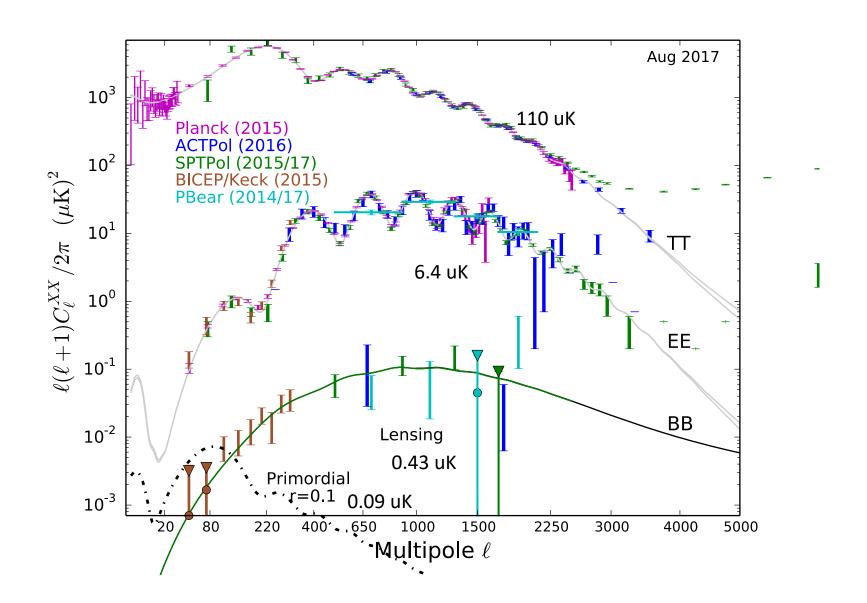
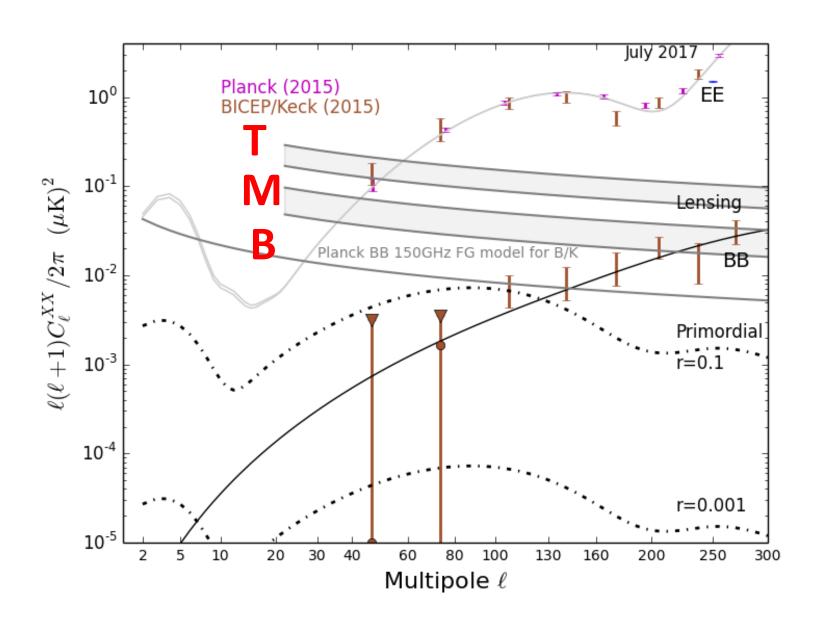
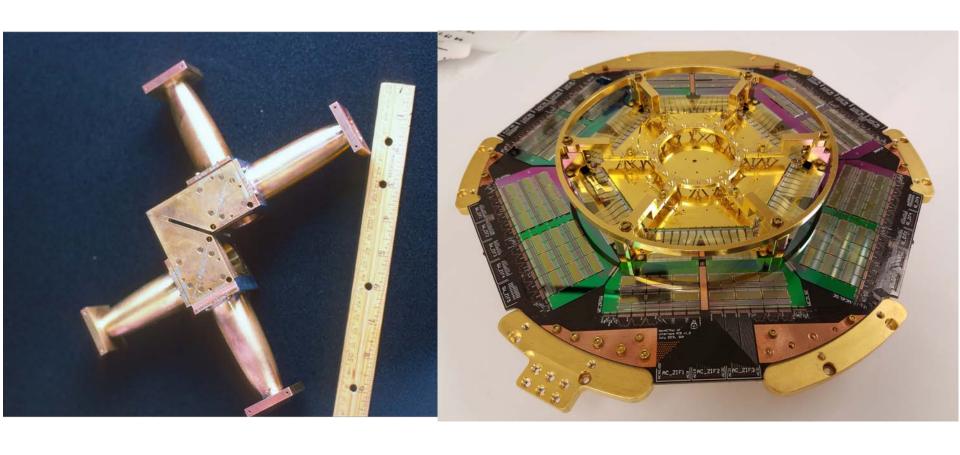




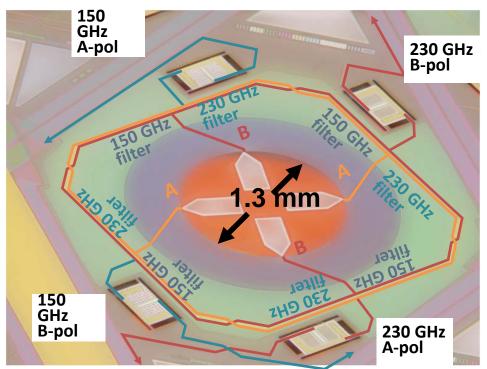
FIG. 3: Sky masks used in the analysis, corresponding to the cleanest 2000, 4000, 8000 and 16000 deg² of the sky accessible from Chile in terms of foreground contamination.

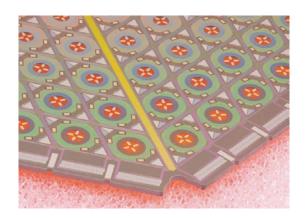


For a convincing detection of primordial B-modes I think you will want:

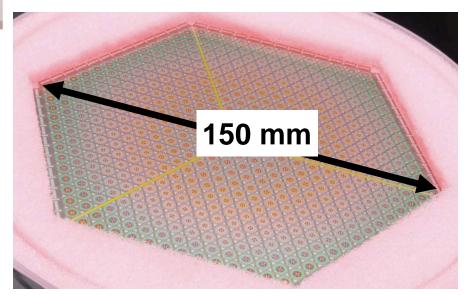
- 1)Independent detections with independent instruments (e.g., ATLAS and CMS) at the ~5-sigma level.
- 2) Measurements in multiple regions of sky.
- 3)An unambiguous frequency spectrum.

Large aperture telescopes will be helpful for foreground cleaning at <90 GHz. To achieve ½ degree resolution at 30 GHz requires a 1.5 meter aperture.


30 years of receiver development


FIRS. First detection of CMB with bolometers. (PI Steve Meyer)

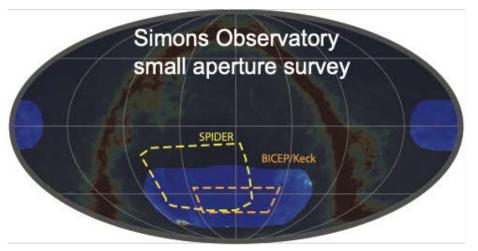
One of three AdvACT array of ~500 feeds. Combination is 3x as sensitive as Planck

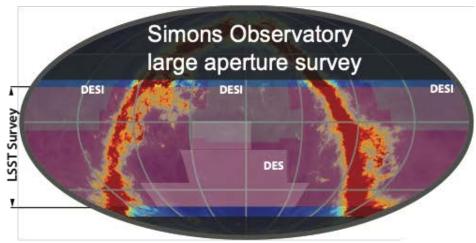

AdvACT detector Wafer PA4

NIST

- 506 pixels / 503 horns
- 2024 TES detectors (1012 each at 150 and 220 GHz)

Small angular scales: CMB Smörgåsbord


- Independent assessment of cosmological parameters
- H₀★
- Neutrino number and mass.
- Isocurvature modes from EE; the lowest hanging fruit?
- Testing GR/equation of state through the growth of structure.
- Calibrating LSST lensing and other surveys.
- Mass bias for quasars, radio sources, through lensing...
- Halo masses through stacking and lensing.
- Cosmic ionization history.
- Find thousands of galaxy clusters.
- Find high redshift dusty galaxies.
-
- Something new!


Simons Observatory

Fully funded (Simons Foundation), first light: 2021

location: Atacama (Chile), 60k detectors

+ HSC, GAMA, KIDs...

B-mode science

 $f_{\rm sky} = 10\%$

@145 GHz: 17' resolution, \sim 2 μ K' /

noise

Maximizes overlap with LSS surveys

 $f_{\rm sky} = 40\%$

@145 GHz: 1.4' resolution, \sim 6 μ K' I

noise

Science Forecast Matrix

	Simons Observatory	CMB-S4	CLASS	LiteBIRD	PICO
Funded?	YES (Simons Foundation)	NO (NSF / DoE)	yes (NSF)	no (phase A)	no (NASA)
Est. first light	2021	2027	2016 (actual)	2027	
Ang. scales	ℓ > 30	ℓ > 30	ℓ < 200	ℓ < 200	ℓ > 2
(<mark>B/K</mark> :0.03) ♂(r)	2 x 10 ⁻³	0.5 x 10 ⁻³	6 x 10 ⁻³	1 x 10 ⁻³	0.1 x 10 ⁻³
(P:0.4) $\sigma(N_{eff})$	0.05	0.03			0.03
(P :0.007) σ(τ)			0.003	0.002	0.002
(P:240) $\sigma(\Sigma m_{_{ m V}})$ [meV]	30	26			15

From Aurelien Fraisse

Sensitivities for f=0.4 per arcmin²

ACT ~B/K ~SPT	90 GHz 19 uK/(ητ) ^{1/2}	150 GHz 18 uK/(ητ) ^{1/2}	Notes: Based on measured ACT noise for 50° elev and for 1.3 mm pwv.* +220,30,40 GHz
SO	7.4-5.3 uK/ $(\eta\tau)^{1/2}$	9.2-5.8 uK/ $(\eta\tau)^{1/2}$ Baseline-goal	Notes: Full atm model, 7/13 OTs. &w/ 30,40,220,270 GHz. From: 1808.07445v1
S4	2 uK/(ητ) ^{1/2}	2 uK/(ητ) ^{1/2}	Notes: Based on SO "goal" but with more detectors. Total: 2x19 OT. &w/20,30,40,220,280, GHz. From S4 site.

 η Is observing efficiency, 20-30%, and τ is duration in years

* The pwv is <1.3 mm 20% of the year, <2 mm 50% of the year

Estimates of ultimate limits

Sensitivity, always important and gains can be made. For the ground:

Frequency	30 GHz	40 GHz	90 GHz	150 GHz	220 GHz	270 GHz
Achieved (μK s ^{1/2})	[320]	[420] ~200	250	260	780	1100
"Best" possible	•••	120	100	170	500	1000

Single detector, single polarization. From J. Gudmundsson & LP

We will ultimately be limited by foreground emission *plus* low-level systematic effects.

