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What would we learn about 
the physics of the early 

universe if primordial black 
holes were (un)observed?

Primordial Black Holes: cf talk by Teruaki Suyama

—> Require large primordial over-densities



1) Probing the end of inflation
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• Primordial curvature perturbations generate density perturbations 
upon re-entering the Hubble radius after inflation 

• Rare fluctuations exceeding critical value collapse into black holes 

• Mass fraction: integrated probability to exceed the threshold

Primordial black holes originating 
from inflationary fluctuations
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Primordial black holes

• Could constitute part or all of dark matter 

• Could provide progenitors for the LIGO/VIRGO events 

• Could provide seeds for cosmological structures 

• Could provide seeds for supermassive black holes in galactic nuclei
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2) Probing quantum diffusion 
during inflation



Primordial black holes originating 
from inflationary fluctuations

• Large fluctuations are required to source PBHs 

• If large fluctuations are produced, they might backreact on the 
expansion dynamics 

• During inflation, cosmological perturbations are of quantum-
mechanical nature —> quantum backreaction? 

• The quantum state in which cosmological perturbations are placed 
possesses specific features, which allow one to design an effective, 
stochastic theory to incorporate their backreaction



The quantum state of 
cosmological perturbations

•                             with              

Two-mode squeezed state (Gaussian state)

• Evolution equation
@
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• Quantum mean value and stochastic average

Lesgourgues, Polarski, Starobinsky (1997)

Martin, VV (2016)
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Revzen (2006); Martin, VV (2017)(at least for proper operators…)

cf talk by Jérôme Martin
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Stochastic Inflation
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i

d

dN
�cg = � V

0 (�cg)

3H2 (�cg)
+

H (�cg)

2⇡
⇠ (N)At leading order in slow roll:

N = ln(a)

Starobinsky, (1982) 1986

Over one e-fold: ��quant

��class
⇠ ⇣



Stochastic-δN formalism
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Spatially flat slice
ψ = 0

uniform density slice
δρ = 0

⃗x = const ζ(t, x) = N (t, x) − N0(t) ≡ δN
Lifshitz, Khalatnikov (1960)


Starobinsky (1983)

Wands, Malik, Lyth, Liddle (2000)

The realised number of e-folds 

is a stochastic quantity:
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 Enqvist, Nurmi, Podolsky, Rigopoulos (2008) ; Fujita, Kawasaki, Tada, Takesako (2015); VV, Starobinsky (2015)


cf talk by David Wands



VV, Starobinsky (2015) 

Pattison, VV, Assadullahi, Wands (2017)


Langevin equation
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Fokker-Planck equation

= ℒϕ ⋅ P

Equation for the PDF of the first passage time
d
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Stochastic-δN formalism

Computational program:

• Solve the first passage time problem

• Identify the PDF of the first passage time with the PDF of (coarse-grained) curvature 

perturbations

• Integrate that PDF above the PBH formation threshold

• Extract the PBH mass fraction



Toy model: flat potential
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+($/μ2; x) is universal
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Exponential tails

Flat well

+($, ϕ) = ∑ an(ϕ)e−Λn$

Constant slope well

Cubic inflection point
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Ezquiaga, Garcia-Bellido, VV (2020)


v0 = 10−3, α = 0.24, β = 9, ϕend = 9
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Potentials with an 
inflection point 

overproduce PBHs, 
unless SR is violated



Conclusions
• Primordial black holes can be seeded by large density perturbations that 

form during inflation


• When this happens, quantum diffusion, that is, the back-reaction of 
vacuum quantum fluctuations on the background dynamics as they get 
amplified and stretched to large distances, may play an important role


• Regions of the potential dominated by stochastic diffusion can be 
identified with a simple criterion: v’2<v2v’’ 

• In stochastically-dominated regions, the system must spend less than one 
e-fold for PBHs not to be too abundantly produced




Conclusions
• Inflection-point potentials overproduce primordial black holes … unless 

they violate slow roll 


• Even in classically-dominated regions, the standard calculations may fail 
because of non-Gaussian tails, which can only be described with non-
perturbative techniques such as the stochastic-δN formalism


• The systematic presence of non-Gaussian tails may have implications for 
other rare astrophysical objects, such as ultra compact mini halos, and for 
alternative strategies for looking for nG signals




Thank you for your attention


