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wavepacket as a coherent superposition of
eigenstates of X
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1) Some key elements of quantum physics

Quantum coherence

* The double slit experiment is a striking example of quantum coherence
because there is a large discrepancy between the diffracted quantum
state of the particle and the localized basis in which the screen makes the
measurement.

If instead of a screen making localized
measurements, you had an apparatus that
could measure the particle in a “double slit
state”, the narrative would be much more
mundane, and the concept of “quantum
coherence” would not be needed.
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1) Some key elements of quantum physics

Quantum entanglement

V) = fl'm) v1), f|w2> v,),

Interactions can create entanglement
Entangled state
after collision

In the example of the photon striking the ball, the

Schrodinger cat initial state evolved into a classical

mixture of localized packets, thanks to the locality of

the interactions and the locality of the photon state

(need b<iw‘v/j>b ~ &; which
is natural for ball
separation much greater
than that photo coherence

length)
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Entangled state
after collision

Interactions can create entanglement

In the example of the photon striking the ball, the
Schrodinger cat initial state evolved into a classical
mixture of localized packets, thanks to the locality of
the interactions and the locality of the photon state

o

PY Py One could imagine probing the “Schrodinger
cat” nature of the initial ball state with a
_ coherent plane wave, suitably measure after
the collision.
o o \ \
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I1) The actual Universe

Most current theories of cosmology create the state of
cosmological perturbations by expanding the QFT vacuum state to
all observable cosmological scales.
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I1) The actual Universe

Most current theories of cosmology create the state of
cosmological perturbations by expanding t
all observable cosmological scale This occurs in both

inflationary and cyclic models

e The QFT vacuum is one of the most quantum states there is!

Definitely not localized
wavepackets!
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I1) The actual Universe

However, the evolution of this quantum state is well described by a
classical distribution

A. Albrecht @ ICTS Sep 2, 2020 88




I1) The actual Universe

However, the evolution of this quantum state is well described by a
classical distribution

* Evolution is essentially
guadratic

A. Albrecht @ ICTS Sep 2, 2020 89



I1) The actual Universe

However, the evolution of this quantum state is well described by a
classical distribution

* Evolution is essentially
guadratic

 Cosmological evolution

€= “‘squeezing” >
enhanced classicality

A. Albrecht @ ICTS Sep 2, 2020 90



I1) The actual Universe

However, the evolution of this quantum state is well described by a
classical distribution

* Evolution is essentially
guadratic

e Cosmological evolution
€= “‘squeezing” >
enhanced classicality

As long as you
“agree to” only ever
measure the system
in classical
wavepackets _ B 91



I1) The actual Universe

However, the evolution of this quantum state is well described by a

Quantum state of the CMB: a twe A'ﬁﬁ

ClaSSICaI dIStrIbUtlon The wave functional of curvature perturbations takes the form

V(] = 1'[ (G C-x)

(K

* Evolution is essentially

uadratic
q See J. Martin talk
(G Cote) = e GG/ (4R2) = R (G- 4

 Cosmological evolution et =
€= “‘squeezing” >
enhanced classicality gttt

measure the system
in classical
wavepackets _ B 92




I1) The actual Universe

However, the evolution of this quantum state is well described by a
classical distribution

Inflation and squeezed quantum states
ALBRECHT, FERREIRA, JOYCE, AND PROKOPEC

|

* Evolution is essentially
guadratic

e Cosmological evolution
€= “‘squeezing” >
- - As long as you
en ha nced CIaSSICa I Ity ”agree to” only ever FIG. 1. Phase space trajectories for a classical upside-
down harmonic oscillator. The presence of one growing and

measure the system one decaying solution produces a “squeezing” effect even at

in classical the classical level. The circular reg.,ion shown evolves with
K time into the squeezed shape above it.
wavepac ets Poep 2, 2020 https://arxiv.org/abs/astro-ph/9303001 93
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I1) The actual Universe

And, there are a relentless array of local interactions that will cause
decoherence: A

e Particles produced
during reheating

e The CMB

* Cosmic dust

e Starlight
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And, there are a relentless array of local interactions that will cause
decoherence: A

e Particles produced
during reheating

e The CMB

* Cosmic dust

e Starlight

“One photon

will do it”
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I1) The actual Universe

In fact, the actual universe is much like the “pendulum in a dark

room” thought experiment:

* An early phase that is
technically quantum, but
can be modeled as a
classical ensemble

decoherence

* Followed by a phase
“quantum Darwinism” class

ion of this quantum state is well described by 3

A
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ion of this quantum state is well described by 3

A

* An early phase that is
technically quantum, but
can be modeled as a
classical ensemble

* Followed by a phase
“quantum Darwinism” class
decoherence

* Observations made by
sampling a very small part
of the environment
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I1l) Some examples

Maldacena 2015 https://arxiv.org/abs/1508.01082 (Constructs an extremely exotic inflation
model specially designed to give observable quantum effects.)

Quantum Entanglement in Cosmology workshop (IPMU May 2019)
https://indico.ipmu.jp/event/300/overview

J. Martin talk here and at IPMU workshop

Kanno et al Noise and decoherence induced by gravitons https://arxiv.org/abs/2007.09838

Parikh et al https://arxiv.org/abs/2005.07211 (with story)



https://arxiv.org/abs/1508.01082
https://indico.ipmu.jp/event/300/overview
https://arxiv.org/abs/2007.09838
https://arxiv.org/abs/2005.07211

How to characterize nonclassicality?

p(n) PP Bisksiontion
(n) 2 An
An
0 > N
(n)
(An)?

ano factor: F = 21

o (n)

l contraposition

Sub-Poissonian distribution or F <1 must be a signature of nonclassicality

A. Albrecht @ ICTS Sep 2, 2020

S. Kanno @ IPMU 2019
https://indico.ipmu.jp/event/300/overview
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How to characterize nonclassicality? 5. Kanno @ IPMU 2019
L — https://indico.ipmu.jp/event/300/overview

p(n) PP Bisissbiiam Kanno: Let’s apply this test
’ to primordial gravitons
(n) 2 An
AA: How do you count
An e e . .
individual gravitons?
0 >N
(n)
(An)?
ano factor: F = 2 1
(n)
Distribution of photons in classical theory is always super-Poissonian and F>1
l contraposition
Sub-Poissonian distribution or F <1 must be a signature of nonclassicality
4
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Inflation and squeezed quantum states

ALBRECHT, FERREIRA, JOYCE, AND PROKOPEC
https://arxiv.org/abs/astro-ph/9303001
fies the WKB criterion for classicality. This is equivalent
to the WKB classicality at late times in an inverted har-
monic oscillator studied by Guth and Pi in Ref. [11]. The
point of this section is to explain that the apparently very
quantum mechanical squeezed state is in fact classical in
the sense with which cosmologists are familiar. That the
truly quantum mechanical features of these states which
are probed, for example, in quantum optics might have
cosmological implications is a fascinating claim but one
which has no substance at present. In Sec. VIII we sum-
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S. Kanno @ IPMU 2019
https://indico.ipmu.jp/event/300/overview

Kanno: Let’s apply this test
to primordial gravitons

AA: How do you count

individual gravitons?
€
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S. Kanno @ IPMU 2019
https://indico.ipmu.jp/event/300/overview

Inflation and squeezed quantum states

ALBRECHT, FERREIRA, JOYCE, AND PROKOPEC
https://arxiv.org/abs/astro-ph/9303001

Kanno: Let’s apply this test
to primordial gravitons

fies the WKB criterion for classicality. This is equivalent

to the WKB classicality at late times in an inverted har- AA: How do you count
monic oscillator studied by Guth and Pi in Ref. [11]. The individual gravitons?
point of this section is to explain that the apparently very pa

quantum mechanical squeezed state is in fact classical in
the sense with which cosmologists are familiar. That the
truly quantum mechanical features of these states which
are probed, for example, in quantum optics might have
cosmological implications is a fascinating claim but one
which has no substance at present. In Sec. VIII we sum-

o The “relativity of quantum

coherence”
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The properties of the noise - its amplitude, power spectrum, etc - are calculable
and depend on the state. We find that for the vacuum state or a coherent state, the
fluctuations in the arm length are extremely small and almost certainly undetectable,
as foreseen by Dyson. But for thermal states — such as from cosmology or evaporating

black holes - the noise is significantly enhanced. Most favorably, if the gravitational

field is in a squeezed state. as predicted by some inflationary models, the fluctuations
| ) A

in the arm length can be enhanced by an exponential of the squeezing parameter, and

are potentially detectable.

[

Parikh et al: Don’t need to
Detection of this fundamental noise would constitute direct evidence for the quantization measure individual

of gravity and the existence of gravitons.

gravitons, just look at noise
in (future) gravity wave
dEteCtOFS. https://arxiv.org/abs/2005.07211
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