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The investigation into the CSP began in the 19th century but there are still important
cases where the problem remains open. In this talk I will tell you about some of the available
results referring for more details to our survey paper

G. Prasad, A. Rapinchuk, Developments on the congruence subgroup problem after the work
of Bass, Milnor and Serre, Milnor’s Collected Works, vol. 5.

I should point out that in the article, as well as in this talk, we will focus exclusively on
the classical case of the CSP for S-arithmetic subgroups of algebraic groups but nowadays
the CSP is being actively considered also in the context of the automorphism groups of free
groups, mapping class groups and also the automorphism groups of other finitely generated
groups.

Speaking about linear groups, given a commutative ring R and its ideal a ⊂ R, one can
consider the homomorphism

ρa : GLn(R) −→ GLn(R/a)

of reduction modulo a, the kernel of which is called the congruence subgroup of level a
and denoted GLn(R, a). More generally, for any subgroup Γ ⊂ GLn(R) one can define the
congruence subgroup

Γ(a) := Γ ∩GLn(R, a),

which of course is a normal subgroup of Γ. Moreover, in this talks R will be the ring
of S-integers of a global field, and in this case for every nonzero a, the subgroup Γ(a) is
automatically of finite index in Γ (over more general rings, one typically considers only ideals
of finite index). Given this supply of finite index normal subgroups {Γ(a)} of Γ naturally
associated with the ideals of R, one is led to the following question.

Congruence Subgroup Problem. Does every normal subgroup N ⊂ Γ of finite index
contain a suitable congruence subgroup?

For the first time, this question was considered back in the 19th century for the group
Γ = SL2(Z) which was central to the theory of modular functions, and then Fricke and Klein
discovered that in this case the answer is negative in a very strong sense. The point is that
the quotients modulo congruence subgroups have a very distinctive and restricted structure.
Namely, we have an isomorphism

SL2(Z)/SL2(Z,m) ' SL2(Z/mZ),

and furthermore, if m = pα1
1 · · · pαr

r , then

SL2(Z/mZ) ' SL2(Z/pα1
1 Z)× · · · × SL2(Z/pαr

r Z),

which implies that the quotient has a composition series where the consecutive quotients
are either (almost) simple groups SL2(Z/pZ) or cyclic groups of prime order. On the other
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hand,

SL2(Z)/{±1} ' Z/2Z ∗ Z/3Z (free product),

hence can be mapped surjectively onto many finite simple groups different from the ones
listed above. Then the kernels of these homomorphisms do not contain any congruence
subgroups, yielding the negative answer to the CSP. While the description of quotients by
congruence subgroups extends to SLn(Z) (n > 3), the (abstract) structure of even SL3(Z)
is significantly more complex than that of SL2(Z). So, it was not obvious how to map the
former onto finite simple groups other than PSL3(Z/pZ), so the CSP remained unanswered
at that time. There seems to be no evidence in the literature of attempts to prove the CSP
in this case, so most probably the negative answer for SL2(Z) had some discouraging, and
in fact quite lasting effect.

The interest to the CSP re-developed in the 1960s when Bass, Lazard and Serre (1964) and
independently Mennicke (1965) showed that for SLn(Z) the CSP has the affirmative answer.
Interestingly, the proof is rather elementary and uses no number-theoretic tools other than
Dirichlet’s Theorem on Primes in Arithmetic Progression (so, potentially, it could have been
found back in the 19th century).

A few years later, Bass, Milnor and Serre (1967) investigated the CSP for SLn(R) where
n > 3 and R is an arbitrary ring of algebraic integers. The results turned out to be quite
surprising: while for SLn(Z[

√
2]) the answer to the CSP problem is still affirmative, for

SLn(Z[i]) it becomes negative. However, the reason the CSP fails for SL3(Z[i]) is different
from the case of SL2(Z): one knows for a fact that SL3(Z[i]) does not have finite quotients
that involve finite simple groups other than PSL3 over appropriate finite fields. So, morally
this case is closer to SL3(Z) rather than to SL2(Z) but nevertheless the answer to the CSP is
negative. In order to describe precisely what happens we need the notion of the congruence
kernel proposed by Serre which we will define next.

First, we need to fix some notations that will be used throughout the talk. We let G denote
a linear algebraic group defined over a global field K, let S be a subset (not necessarily finite)
of the set V K of all valuations of K (containing all archimedean valuations if K is a number
field, and at least nonempty if K has positive characteristic), and let

OS = {a ∈ K× | v(a) > 0 for all v ∈ V K \ S} ∪ {0}

be the corresponding ring of S-integers in K. We fix a faithful K-representation G ↪→ GLN ,
which allows us to define unambiguously the group

Γ = G(OS) := G ∩GLN(OS)

of S-integral points. Moreover, to every nonzero ideal a ⊂ OS, one associates the congruence
subgroup Γ(a).

Next, we introduce two topologies on Γ:

• τSa , the S-arithmetic topology, with the fundamental system of neighborhoods of the
identity consisting of all finite index normal subgroups N ⊂ Γ (= profinite topology);

• τSc , the congruence topology, with the fundamental system of neighborhoods of the identity
consisting of all congruence subgroups Γ(a) for all nonzero ideals a ⊂ OS.

Clearly, τSa � τSc , and the affirmative answer to the CSP as stated above is equivalent to
the fact that these topologies coincide: τSa = τSc . To measure the difference between these
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topologies in the general case, one considers the corresponding completions which in the case
at hand can be described in terms of inverse limits (instead of Cauchy sequences):

Γ̂ = lim
←

Γ/N and Γ = lim
←

Γ/Γ(a)

(arithmetic and congruence completions). Since τSa � τSc , there is a natural continuous
surjective homomorphism of topological groups:

πS : Γ̂ −→ Γ

The kernel C(Γ) = Ker πS is called the congruence kernel. One easily shows that

τSa = τSc ⇔ Ker πS = {1},

i.e. the affirmative solution to the congruence subgroup problem is equivalent to the fact
that C(Γ) is trivial. In the general case, the size of C(Γ) characterizes the difference between
the two topologies, i.e. the deviation from the positive solution. So, according to Serre, by
the Congruence Subgroup Problem one should understand the problem of computation of
the congruence kernel C(Γ).

Here is what the congruence kernel is in the above examples:

(a) C(SL2(Z)) is a free profinite group of countable rank;

(b) C(SLn(Z) = C(SLn(Z[
√

2])) = {1} where n > 3;

(c) C(SLn(Z[i])) ' Z/4Z for n ≥ 3.

We will now describe a general method for computing the congruence kernel which yields
the results in (b) and (c) and many other situations. First, the above topologies τSa and

τSc can be extended from Γ = G(OS) to G(K), and the latter admits the completions ĜS

and G
S

with respect to these topologies. As above, there is a continuous surjective group

homomorphism π̃S : ĜS −→ G
S
, the kernel CS(G) = Ker π̃S of which coincides with C(Γ)

(in particular, it is a profinite group). Thus, C = CS(G) can be determined from the exact
sequence

1→ C −→ ĜS π̃S

−→ G
S → 1.

The definition of C in terms of ĜS and G
S

rather than in terms of Γ̂ and Γ has several
advantages. First, it quickly shows that the congruence kernel is independent of the choice
of a faithful K-representation G ↪→ GLN . Second, we acquire an action of the group G(K)
on C, and the available structural information on G(K) can be used to show that this action

is trivial, in which case we say that C is central, i.e. is contained in the center of ĜS (see

below). Third, one can identify G
S
. More precisely, the general case in the congruence

subgroup can be reduced to the main case where G is absolutely almost simple and simply
connected. So, henceforth we will assume that G is such, and besides we can of course assume
that Γ = G(OS) is infinite. Then it follows from the Strong Approximation Theorem that

G
S

can be identified with the group of S-adeles G(AS) (the restricted topological product
of the groups G(Kv) for v ∈ V K \ S with respect to the open subgroups G(Ov)). Here I
would like to point out that the Strong Approximation Theorem was proved by Kneser and
Platonov over number fields, and independently by Prasad and Margulis over global fields
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of positive characteristic. This brings us to the problem of analyzing topological extensions

(C) 1→ C −→ Ĝ
π−→ G(AS)→ 1

with a profinite kernel C. Another important feature of this sequence is that it splits over
G(K), and is in fact the universal extension with these properties. In order to get infor-
mation about C one uses duality; more precisely, one considers the Hochschild-Serre spec-
tral sequence of continuous cohomology with coefficients in R/Z with trivial action (thus,
H i(∗) = H i

ct(∗,R/Z)):

H1(G(AS))
ϕ−→ H1(Ĝ) −→ H1(C)G(AS) ψ−→ H2(G(AS)).

Using the fact that the extension (C) splits over G(K) and is universal, one shows that Imψ
coincides with the metaplectic kernel:

M(S,G) := Ker(H2(G(AS))
res−→ H2(G(K))).

This brings us to the exact sequence

1→ Coker ϕ −→ H1(C)G(AS) −→M(S,G)→ 1.

On the other hand, Coker ϕ can be described as

Hom([G(K), G(K)]/[G(K), G(K)],R/Z),

the dual group for the finite abelian group [G(K), G(K)]/[G(K), G(K)] where the bar de-
notes the closure in the S-arithmetic topology. In many cases it is known that G(K) is
an almost simple abstract group (meaning no nontrivial noncentral normal subgroups), and
then G(K) = [G(K), G(K)], hence Cokerϕ = {1}. In particular, this is always the case if G
is K-isotropic, which follows from the truth of the Kneser-Tits Conjecture over global fields.
Here I would like to mention Prasad’s contributions to the investigation of the Kneser-Tits
Conjecture. In a joint paper with M.S. Raghunathan, he reduced the general case of the
conjecture to the relative rank one case. This easily implies the truth of it over local fields,
and reduces it over global fields to the verification of a small number of cases, one of which
(the isotropic triality forms of type D4) was considered by Prasad himself. Furthermore,
according to a conjecture due to Platonov and Margulis, which we call Conjecture (MP),
G(K) is expected to be almost simple for all groups of type different from An no matter
whether it is isotropic or anisotropic, which again has been established in most cases (with
the exception of anisotropic triality forms of type D4 and most anisotropic forms of type E6).
For anisotropic groups of type An, it may happen that G(K) 6= [G(K), G(K)] but according
to (MP), the commutator subgroup is closed in the S-congruence topology provided that
S does not contain any non-archimedean places v such that G is Kv-anisotropic (which we
typically assume) - this has been proven for all inner forms and also some outer forms. So,
in all those cases, Coker ϕ is known to be trivial, and conjecturally this is always the case.
Then, of course,

H1(C)G(AS) 'M(S,G).

In practically all cases where C is known to be finite, its computation has been carried out

in two steps. First, one proves that C is central, i.e. is contained in the center of Ĝ (in
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some cases, it is relatively easy, in others it is less easy, but there are still cases where it is
unknown). Then the action of G(AS) on H1(C) is trivial, and we obtain that

H1(C) = Hom(C,R/Z),

which is the Pontrjagin dual of C, is isomorphic to M(S,G). So, one concludes the compu-
tation of C by computing the metaplectic kernel.

While there are cases where the centrality is expected but has not been established yet,
the metaplectic kernel has been computed in all cases needed for the CSP. The final result
was obtained in our paper

G. Prasad, A. Rapinchuk, Computation of the metaplectic kernel, Publ. math. IHES
84(1996), 91-187.

But it was preceded by a series of papers by Prasad and Raghunathan, in which they have
provided complete local computations and also global computations in the isotropic case, as
well as the important papers by Matsumoto, Moore and Deodhar.

Theorem 1. Let G be an absolutely almost simple algebraic group over a global field K, and
S be a set of places of K that contains all archimedean places if K is a number field, and
nonempty if K is of positive characteristic. Then

(a) M(S,G) is isomorphic to a subgroup of the group µK of all roots of unity in K. In
particular, it is always finite, and hence the congruence kernel is finite once it is central;

(b) If S contains a place v0 which is either nonarchimedean and G is Kv0-isotropic, or is
real and G(Kv0) is not topologically simply connected, then M(S,G) is trivial1.

Thus, if C is central then it is finite. Conversely, if C is finite, and we assume (MP), then
C is central. So, the centrality of C is essentially equivalent to its finiteness.

If we assume that S contains no nonarchimedean anisotropic places, then the dichotomy
for the congruence kernel can be made even sharper: it is either trivial (precisely in the
situation as described in the theorem) or isomorphic to µK .

Let us also observe in passing that our results also cover the case where S = ∅ which is
important for the theory of automorphic forms: it turns out that in this case M(S,G) is
always isomorphic to µK (this depends on one assumption for some outer forms of type An).

For illustration purpose, let us show how this theorem explains the previous examples.

Example. Let G = SLn, n > 3. Then for any K and any S as above, the congruence kernel
C = CS(G) is central (see below).

• For Γ = SLn(Z), we have K = Q and S = {v∞} with v∞ the real valuation. Since
π1(SLn(R)) = Z/2Z (and, in particular, SLn(R) is not topologically simply connected),
we obtain M(S,G) = {1}, and therefore CS(G) = {1}, as we stated above.

• For Γ = SLn(Z[
√

2]) we have K = Q(
√

2) and S = {v′∞, v′′∞} with v′∞, v
′′
∞ being two real

valuation. Again, since SLn(R) is not topologically simply connected, we conclude that
M(S,G) ' CS(G) is trivial.

• For Γ = SLn(Z[i]), we have K = Q(i) and S = {v∞} with v∞ a single complex valuation.
We obtain that CS(G) 'M(S,G) ' µK which is a cyclic group of order 4.

1This, in particular, means that M(S,G) is always trivial if S is infinite.
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The proof of Theorem 1 uses a lot of ingredients and requires a case-by-case analysis. The
following theorem summarizes the local computations carried out by Prasad and Raghu-
nathan, the ambiguity in which was later eliminated by Prasad.

Theorem 2. Let K be a nonarchimedean local field. For any absolutely almost simple simply
connected K-group G, the group H2(G(K)) is isomorphic to the group µK of roots of unity in
K.

I would like to conclude the talk with a couple of remarks about the problem of centrality
of the congruence kernel. The main efforts here are focused on proving the following

Conjecture (Serre) Let G be an absolutely almost simple simply connected algebraic group
over a global field K, and let S be a set of valuations of K that contains all archimedean
valuations if K is a number field and is nonempty if K has positive characteristic. If

rkS G :=
∑

v∈S rkKv G > 2 and rkKv G > 0 for all nonarchimedean v ∈ S

then CS(G) is finite (equivalently, central).

(In particular, CS(G) is expected to be trivial whenever S is infinite provided that it does
not contain any anisotropic nonarchimedean places for G.)

Serre’s conjecture has been proven in quite a few cases using a variety of techniques but
it still remains open, for example, for the norm 1 groups associated with division algebras
(even quaternion division algebras). I would like to show you our result on centrality that
does not require any case-by-case considerations. To put this result in perspective, we recall
that the congruence completion G can be identified with the group of S-adeles G(AS). This
implies that for any v1, v2 ∈ V K \S, v1 6= v2, the groups G(Kv1) and G(Kv2) can be naturally
embedded into G so that the images of these embeddings commute inside G. The theorem

below says that if the arithmetic completion Ĝ has a similar structure.

Theorem 3. Let G, K and S be as above, and assume that (MP) holds for G/K and S
contains no nonarchimedean anisotropic places for G. Suppose that for every v /∈ S, there

exists a subgroup Gv of Ĝ so that the following conditions are satisfied:

(i) π(Gv) = G(Kv) for all v /∈ S, where π : Ĝ→ G is as above;

(ii) Gv1 and Gv2 commute elementwise for all v1, v2 /∈ S, v1 6= v2;

(iii) the subgroup generated by the Gv for v /∈ S is dense in Ĝ.

Then CS(G) is central in Ĝ.

(Essentially, this means that the existence of the elementwise commuting lifts of the local
groups G(Kv) implies that the congruence kernel is central.)

This theorem enables one to quickly check the centrality for G = SLn, n > 3. The argu-
ment uses only the well-known commutator relations for elementary matrices in conjunction
with the fact that for v1, v2 /∈ S and a ∈ Kv1 and b ∈ Kv2 we have a · b = 0 in AS. We refer
to our survey paper for the details. This argument extends to all Chevalley groups of rank
> 1, to SL2 if the group of S-units O×S is infinite, and some other situations.

As we pointed out, Serre’s conjecture implies that CS(G) should be trivial for any infinite
S. What we can prove is that it is trivial for some infinite S, viz. when S almost contains a
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generalized arithmetic progression (with one technical restriction on the progression if G is an
outer form). Here generalized arithmetic progressions are defined in terms of the Frobenius
automorphism of a given finite (but not necessarily commutative Galois extension).

Finally, here is one interesting result in the case where the congruence kernel is infinite.
As we mentioned above, for Γ = SL2(Z), the congruence kernel C is the free profinite group
of countable rank2. However, using some variations of Theorem 3 one shows that as a normal

subgroup of Ĝ it is generated by a single element. Similar facts are available for other groups
of relative rank one.

2In fact, in the situation at hand, we have the following dichotomy: the congruence kernel is either finite
or is not finitely generated


