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Abstract
Fake projective planes are smooth, complex surfaces of general type with Betti
numbers equal to those of the usual projective plane. They come in complex conju-
gate pairs and have been classified as quotients of the 2-dimensional ball by explicitly
written arithmetic subgroups. In the following, we find equations of a projective model
of a conjugate pair of fake projective planes by studying the geometry of the quotient
of such surface by an order 7 automorphism.

1. Introduction
A compact, complex surface with the same Betti numbers as the usual complex pro-
jective plane is called a fake projective plane if it is not isomorphic to the complex
projective plane. A fake projective plane has ample canonical divisor, so it is a smooth
(and geometrically connected proper) surface of general type with geometric genus
pg D 0 and self-intersection of canonical class K2 D 9 (this definition extends to
arbitrary characteristic). The existence of a fake projective plane was first proved by
Mumford in [22]. His method was based on the theory of 2-adic uniformization, and
it led Ishida and Kato [12] to prove the existence of two more via the 2-adic approach.
Recently Allcock and Kato [1] used a lattice with torsion in the 2-adic method to con-
struct another fake projective plane. The second author in [13] gave a construction of
a fake projective plane as a Galois cover of a singular model of Ishida elliptic sur-
face which, as described by Ishida [11], is covered (non-Galois) by the Mumford fake
projective plane.

Fake projective planes have Chern numbers c21 D 3c2 D 9 and are complex 2-
ball quotients (see Aubin [2] and Yau [25]). Such ball quotients are strongly rigid by
Mostow’s rigidity theorem [21, Theorem A] (i.e., determined by fundamental group
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up to holomorphic or anti-holomorphic isomorphism). Fake projective planes come
in complex conjugate pairs (see [20]) and they have been classified as quotients of
the 2-dimensional complex ball by explicitly written cocompact torsion-free arith-
metic subgroups of PU.2; 1/ (see [23], and also [3], [4]). The arithmeticity of their
fundamental groups was proved by Klingler in [19]. There are exactly one hundred
fake projective planes in total, corresponding to fifty distinct fundamental groups.
Cartwright and Steger also computed the automorphism group of each fake projective
plane X , which is given by Aut.X/ŠN.X/=�1.X/, where N.X/ is the normalizer
of �1.X/ in its maximal arithmetic subgroup of PU.2; 1/. In particular Aut.X/Š ¹1º,
Z3, Z23 or G21, where Zn is the cyclic group of order n and G21 is the unique non-
Abelian group of order 21. Among the fifty pairs exactly thirty-three admit nontrivial
automorphisms: three pairs have AutŠG21, three pairs have AutŠ Z23, and twenty-
seven pairs have Aut Š Z3. It turns out, for example, that the Mumford fake plane
and the Keum fake plane have fundamental groups in the same maximal arithmetic
subgroup of PU.2; 1/, but the former has AutŠ ¹1º and the latter AutŠG21.

On the other hand, in [14] all possible quotients of fake projective planes were
classified—that is, the Z7-quotient of a fake projective plane with Aut Š G21 is a
singular model of an elliptic surface with two multiple fibers and one I9-fiber and
three I1-fibers. The three pairs of fake projective planes with Aut Š G21 produce
in this way three such elliptic surfaces, up to complex-conjugacy, with induced Z3-
action: a .2; 3/-elliptic surface whose Z3-quotient is a singular model of Ishida elliptic
surface, another .2; 3/-elliptic surface, and a .2; 4/-elliptic surface (see also [16], [17]
for further details).

In the present article, we find equations of a projective model of a conjugate pair
of fake projective planes by studying the geometry of the quotient of such surface by
an order 7 automorphism. The equations are given explicitly by eighty-four cubics in
P9 with coefficients in the field QŒ

p
�7�. Their complex conjugate equations define

the complex conjugate surface. This pair has the most geometric symmetries among
the fifty pairs, in the sense that its automorphism group is G21 and its Z7-quotient is
a singular model of a .2; 4/-elliptic surface, which is not simply connected. The uni-
versal double cover of the .2; 4/-elliptic surface has only one multiple (double) fiber
and has the same Hodge numbers as K3 surfaces but with Kodaira dimension 1. This
pair is different from those of Mumford and Keum fake planes, and was discussed in
[15].

It is an open problem to determine whether the bicanonical map of a given fake
projective plane gives an embedding into P9. It has been confirmed affirmatively for
several pairs of fake projective planes, including the one we discuss here, by the van-
ishing result of [5], [18], and [17], and by the theorem of Reider [24, Theorem 1] (see
also [7], [10], where the authors use the term “Keum’s fake projective planes” for all
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fake projective planes with AutŠG21). The equations in this article also provide an
explicit proof for the embeddability for the pair.

Our work is organized as follows. We describe our main result in Section 2 by
presenting the equations of a subscheme in CP9, and we indicate the computer cal-
culations that allow one to verify that this subscheme is a fake projective plane. In
Section 3, we start the explanation of the process that led us to the equations. Specif-
ically, we discuss the geometry of the minimal resolution of the quotient of a certain
fake projective plane by Z7 and its universal double cover X . Section 4 describes the
breakthrough calculation that allowed us to identify the image of X under a certain
map to CP3 as a specific singular sextic surface. In Sections 5 and 6, we describe
additional features of the surface X , and we explain how we found the field of ratio-
nal functions of the fake projective plane. In Section 7, we finally explain how we
obtained the eighty-four cubic equations of Section 2. We add a final, minor comment
in Section 8.

Computer files for our computation are available as supplemental materials with
the online version of this article (see https://doi.org/10.1215/00127094-2019-0076).

2. Equations
In this section, we write down eighty-four explicit degree 3 equations in ten vari-
ables. We argue that they cut out a fake projective plane Z with Aut.Z/Š G21 and
H1.Z;Z/D Z42. Here Zm WD Z=mZ.

The eighty-four equations with complex-conjugate coefficients cut out another
fake projective plane that is complex-conjugate to the former. We identify this pair as
the pair of fake projective planes which is .aD 7;pD 2;;;D327/ in the Cartwright–
Steger classification [4, registerofgps.txt], or as one of the three pairs in the class
.k DQ; `DQ.

p
�7/;pD 2;T1 D;/ (see [3], [23]). This pair does not belong to the

class .aD 7;pD 2; ¹7º/ which contains Mumford fake plane .aD 7;pD 2; ¹7º; 721/
and Keum fake plane .aD 7;pD 2; ¹7º;D327/.

Let CP9 be a projective space with homogeneous coordinates denoted by
.U0;U1; : : : ;U9/. Consider the non-Abelian group G21 which is a semidirect prod-
uct of Z7 and Z3. We define its action on CP9 by its action on the homogeneous
coordinates by

g7.U0 W U1 WU2 W U3 W U4 W U5 W U6 W U7 W U8 W U9/

WD .U0 W �
6U1 W �

5U2 W �
3U3 W �U4 W �

2U5 W �
4U6 W �U7 W �

2U8 W �
4U9/

g3.U0 W U1 WU2 W U3 W U4 W U5 W U6 W U7 W U8 W U9/

WD .U0 W U2 WU3 W U1 W U5 W U6 W U4 W U8 W U9 W U7/

(2.1)

where � D exp.2� i
7
/ is the primitive seventh root of 1.

https://doi.org/10.1215/00127094-2019-0076


1138 BORISOV and KEUM

Table 1. Equations of the fake projective plane 1–24.

eq1D U1U2U3C .1� i
p
7/.U2

3 U4CU
2
1 U5CU

2
2 U6/C .10�2i

p
7/U4U5U6

eq2D .�3C i
p
7/U3

0 C .7C i
p
7/.�2U1U2U3CU7U8U9 �8U4U5U6/

C8U0.U1U4CU2U5CU3U6/C .6C2i
p
7/U0.U1U7CU2U8CU3U9/

eq3D .11� i
p
7/U3

0 C128U4U5U6 � .18C 10i
p
7/U7U8U9C64.U2U

2
4 CU3U

2
5 CU1U

2
6 /

C.�14�6i
p
7/U0.U1U7CU2U8CU3U9/C8.1C i

p
7/.U2

1 U8CU
2
2 U9CU

2
3 U7 �2U1U2U3/

eq4D �.1C i
p
7/U0U3.4U6CU9/C 8.U1U2U3CU1U6U9CU5U7U9/C16.U5U6U7 �U

2
1 U5 �U3U

2
5 /

eq5D g3.eq4/

eq6D g23.eq4/

eq7D .12C4i
p
7/U1U2U3C .4C4i

p
7/.U3U5U8 �U0U2U5C4U4U5U6/C .3� i

p
7/U0U1U7

C8.U2U4U7CU6U7U8 �U
2
1 U8 �2U4U6U8/C .2C2i

p
7/.U3U

2
8 �U0U2U8/

eq8D g3.eq7/

eq9D g23.eq7/

eq10D .2C6i
p
7/U1U2U3C4.�5C i

p
7/U5.U

2
1 C2U4U6/�8U0.U2U5CU3U6/C8.�1C i

p
7/U3U

2
5

C2.3� i
p
7/U0U1U7 �8U

2
1 U8C .�1� i

p
7/U8.U0U2C4U4U9/C 8.1C i

p
7/U3U5U8 �32U4U6U8

C2.1� i
p
7/.2U6U7U8C4U5U7U9C4U5U6U7CU7U8U9/C2.3C i

p
7/U3U

2
8 �16U4U5U9C4U1U

2
9

eq11D g3.eq10/

eq12D g23.eq10/

eq13D �8i
p
7U2

1 U3C .�7C5i
p
7/U0U2U3C4.�7C i

p
7/U0U

2
6 C4U

2
0 U7C .8�8i

p
7/U1U4U7

C4.�5� i
p
7/U2U5U7C .8C8i

p
7/U3U6U7C .�1�5i

p
7/U1U

2
7 �8U2U7U8C .6C6i

p
7/U3U7U9

eq14D 8U2
1 U3C 2.3� i

p
7/U0U1U5C16U3U4U6 �16U

2
5 U6C2.1C i

p
7/U2U5U7 �8U3U6U7

C2.�1� i
p
7/U2

3 U8C 2.�1C i
p
7/U0U6U9C .�5� i

p
7/U3U7U9

eq15D 2.�3� i
p
7/U2

1 U3C2.3� i
p
7/U0U2U3C4.�1C i

p
7/U0U1U5C 4.�1� i

p
7/U2

3 U5

C8U1U2U6C4.1C i
p
7/U0U

2
6 �4U

2
0 U7C .1C i

p
7/U1U

2
7 C2.�1C i

p
7/U0U1U8C 4U3U7U9

eq16D .�3C i
p
7/U3

2 C .�3C i
p
7/U2

1 U3C4U0U2U3C .�2�2i
p
7/U2

0 U4C 8U1U
2
4 C8U0U1U5

C.�5� i
p
7/U1U2U6C .4C4i

p
7/U3U4U6C2U0U1U8C .3� i

p
7/U2U7U8C .2C2i

p
7/U3U4U9

eq17D 4.�1� i
p
7/U3

2 C .5C i
p
7/U0U2U3C4.3� i

p
7/U2

3 U5C16.1� i
p
7/U2U4U5

C4.�1� i
p
7/U2U5U7 �8U1U2U9C4.1C i

p
7/U3U4U9 �32U

2
5 U9 �16U5U8U9

eq18D 8U2
1 U3C .�5� i

p
7/U0U2U3C4.1C i

p
7/U2

3 U5C4.1C i
p
7/U1U2U6

C16.�1C i
p
7/U2

5 U6C 8U2U5U7 �16U3U6U7C8.�1C i
p
7/U5U6U8 �8U3U7U9

eq19D .�5� i
p
7/U2

0 U4 �8U2U5U7C .�1� i
p
7/U1U

2
7 C4U0U1U8 �4U2U7U8C .�5C i

p
7/U1U2U9

C2.1� i
p
7/U3U4U9C2.1� i

p
7/U0U6U9C4U3U7U9C2U

2
8 U9C2U0U

2
9

eq20D 4.1C i
p
7/U2

1 U3C 2.1� i
p
7/U0U2U3 �8U

2
0 U4C 4.�3� i

p
7/U1U

2
4 �8i

p
7U0U1U5

C8.1� i
p
7/U2U4U5C .5� i

p
7/U0U1U8C2.�5C i

p
7/U2

3 U8C 16U5U8U9C8U
2
8 U9

eq21D .1� i
p
7/U2

1 U3 �4U0U1U5 �8U3U4U6 �8U0U
2
6 C4U1U4U7C .2�2i

p
7/U2U5U7

C2U1U
2
7 �2U0U1U8C .1C i

p
7/U2

3 U8C .1� i
p
7/U2U7U8C .�1C i

p
7/U3U7U9

eq22D �8U
2
1 U3C16U2U4U5 �8U1U2U6C4.1C i

p
7/U0U

2
6 C .1C i

p
7/U0U1U8

C8U2U4U8 �8U5U6U8C 4U1U2U9 �8U3U4U9C2.1C i
p
7/U0U6U9

eq23D .�3C i
p
7/.U3

2 CU
2
1 U3/C4.�1� i

p
7/U1U

2
4 C .�1C3i

p
7/U1U2U6C 2.�1� i

p
7/U1U4U7

C.1C i
p
7/U2

3 U8C8U2U4U8C4.�1C i
p
7/U5U6U8C4U2U7U8C4U1U2U9

eq24D 2U0U2U3C .�1� i
p
7/U2

0 U4C2.1� i
p
7/U0U1U5C2.1� i

p
7/U1U2U6C2U0U1U8

�4U2
3 U8 �4U2U4U8C2.1� i

p
7/U5U6U8C4U5U8U9C2U

2
8 U9

THEOREM 2.1
Eighty-four cubic equations of Tables 1 and 2 give equations of a fake projective plane
Z in CP9 embedded by its bicanonical linear system.
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Table 2. Equations of the fake projective plane 25–84.

eq25D .�1C3i
p
7/U2

0 U1C .44�4i
p
7/U2

2 U3C64U3U4U5C .36�12i
p
7/U1U3U6C .16C16i

p
7/U2

4 U6

C.�4�4i
p
7/U0U2U7 �32U3U4U8C .4C4i

p
7/U0U6U8 �16U3U7U8C .8�8i

p
7/U1U3U9C16U4U7U9

eq26D .�1C3i
p
7/U2

0 U1C .�4�4i
p
7/U2

2 U3C .40�8i
p
7/U1U2U5C .4�12i

p
7/U1U3U6C96U

2
4 U6

C.�24�8i
p
7/U2U

2
6 C16U

2
1 U7C .�2C2i

p
7/U0U2U7C64U4U6U7C .20�4i

p
7/U1U2U8 �8U0U6U8

C16U4U7U9

eq27D .5C i
p
7/U2

0 U1C .�4�4i
p
7/U2

2 U3C .16�16i
p
7/U3U4U5C .�20�4i

p
7/U1U3U6C32U

2
4 U6

C32U0U5U6C8U0U6U8 �16U1U3U9C16U0U5U9C8U0U8U9

eq28D 8U2
2 U3C .�3C i

p
7/U0U

2
3 C .�4�4i

p
7/U1U2U5C .4C4i

p
7/U3U4U5C32U

3
5 C .4C4i

p
7/U3U5U7

C16U2
5 U8C .3� i

p
7/U1U3U9C8U2U6U9

eq29D .�3C i
p
7/U2

2 U3C .5C i
p
7/U0U2U4C8U1U2U5 �8U2U

2
6 C2U0U2U7C .�1� i

p
7/U1U2U8C 8U

2
5 U8

C.3� i
p
7/U1U3U9C .4C4i

p
7/U2

4 U9 �8U2U6U9C .2C2i
p
7/U4U7U9 �2U0U8U9C .�3C i

p
7/U2U

2
9

eq30D 8U2
2 U3C .4�4i

p
7/U2

1 U4C .�12�4i
p
7/U1U2U5C .�4�12i

p
7/U2

4 U6C .12C4i
p
7/U2U

2
6

C.2�2i
p
7/U2

1 U7 �8U1U2U8 �16U3U4U8C .1C3i
p
7/U0U6U8C .�3� i

p
7/U3U7U8C4U1U3U9

C.6C 2i
p
7/U2U6U9

eq31D .�4C4i
p
7/U2

1 U4 �4U1U2U5C .�4C4i
p
7/U3U4U5C 16U

3
5 C .�8C8i

p
7/U2

4 U6C .2C2i
p
7/U0U5U6

�4U2
1 U7C .2C2i

p
7/U6U

2
7 C8U3U4U8 �4U0U6U8 �4U5U

2
8 C .1C i

p
7/U2

7 U9

eq32D .�5� i
p
7/U2

0 U1C .�6C2i
p
7/U0U

2
3 C .�24C 8i

p
7/U3U4U5C .20C 4i

p
7/U1U3U6 �32U

2
4 U6

�32U0U5U6C32U2U
2
6 C .2C2i

p
7/U0U2U7C .4C4i

p
7/U1U2U8 �8U0U6U8C .10C 2i

p
7/U1U3U9

C16U2U6U9

eq33D .7�5i
p
7/U2

0 U1C .�56�24i
p
7/U2

1 U4C32i
p
7U1U2U5C .28C4i

p
7/U1U3U6C .28C28i

p
7/U0U5U6

C.�84�4i
p
7/U2

1 U7C .7C7i
p
7/U0U2U7 �56U3U5U7C56U6U

2
7 C24i

p
7U1U2U8C56U0U6U8

C.14�18i
p
7/U1U3U9C28U

2
7 U9

eq34D .�5� i
p
7/U2

0 U1C48U1U2U5C .�16�16i
p
7/U3U4U5C32U

2
4 U6C .2C10i

p
7/U2

1 U7

C.�48C 16i
p
7/U4U6U7C .28�4i

p
7/U1U2U8C .�12�12i

p
7/U3U4U8C .�16�8i

p
7/U0U6U8

C.�22C 2i
p
7/U1U3U9C .�8�8i

p
7/U2U6U9C .�8C8i

p
7/U4U7U9

eq35D .10C 2i
p
7/U2

2 U3C .�11C i
p
7/U0U2U4 �16U1U2U5C .20C4i

p
7/U3U4U5 �16U2U

2
6

C.�1� i
p
7/U0U2U7C .�2�2i

p
7/U1U2U8 �16U

2
5 U8C .�4�4i

p
7/U2

4 U9C .3� i
p
7/U2U

2
9

eq36D .2C2i
p
7/U0U

2
3 C .�6C 2i

p
7/U0U2U4C .4�4i

p
7/U1U3U6C32U

2
4 U6C .�12�4i

p
7/U2U

2
6 C2U0U2U7

C16U4U6U7C .7� i
p
7/U1U2U8 �8U

2
5 U8C4U1U3U9C .4�4i

p
7/U0U5U9C4U4U7U9 �2i

p
7U0U8U9

eqk D g3.eqk�24/; kD 37; : : : ;60

eqk D g23.eqk�48/; kD 61; : : : ;84

Proof
Let Z be the subscheme of CP9 cut out by these eighty-four equations. We use
Magma to calculate the Hilbert series of Z to give

dimH 0
�
Z;O.k/

�
D 18k2 � 9kC 1

for all k � 0.
We then use reduction modulo 263 with i

p
7 D 16mod263 (which is chosen

just because it is a prime of decent size with a clear root of �7). We calculate (by
Macaulay2) the projective resolution of OZ as

0!O.�9/˚28!O.�8/˚189!O.�7/˚540!O.�6/˚840!

!O.�5/˚756!O.�4/˚378!O.�3/˚84!O!OZ! 0:
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By semicontinuity, the resolution is of the same shape over C. Since all of the sheaves
O.�k/, k D 3; : : : ; 9; are acyclic, we see that, for all i � 0,

hi .Z;OZ/D h
i .CP9;O/:

That is, h1.Z;OZ/ D h2.Z;OZ/ D 0 and h0.Z;OZ/ D 1, which implies that the
scheme Z is connected. Since the Hilbert polynomial has degree 2, its irreducible
components have dimension at most 2.

We also verify that Z is smooth. It is a somewhat delicate calculation. In theory,
one can take the 7 � 7 minors of the 84 � 10 matrix of partial derivatives of the
equations and verify that, together with the equations themselves, they generate the
ideal which coincides with CŒU0; : : : ;U9� for large degrees. In practice, such direct
calculation is impossible, since the number of minors is too large. Instead, we pick
three 7� 7 minors of the Jacobian matrix and show that they have no common zeros
on Z by a Hilbert polynomial calculation. The minors are chosen so that they do not
vanish at the fixed points of the automorphism g7—namely, at the three points

.U0; : : : ;U7;U8;U9/ 2
®
.0; : : : ; 0; 0; 1/; .0; : : : ; 0; 1; 0/; .0; : : : ; 1; 0; 0/

¯
:

The subsets of equations and variables that define the minors are given in Table 3. This
calculation can be performed in Magma software package modulo 263 with i

p
7D

16. The Hilbert polynomial of the quotient drops from 18k2�9kC1 to 504k�3654,
then to 7056 and finally to 0 as one adds the three minors to the ideal. If the equations
generate the ring modulo 263, then they also generate it with exact coefficients. This
calculation means that all geometric points of Z have tangent space of dimension at
most 2, which together with h0.OZ/D 1 implies that Z is a smooth surface.

Thus we have a smooth surface Z and a very ample divisor class

D WDOZ.1/

on it. The Hilbert polynomial together with the Riemann–Roch implies that

D2 D 36; DKZ D 18; �.Z;OZ/D 1:

Note that this shows that Z is not isomorphic to CP2. We also know that h0;1.Z/D
h0;2.Z/D 0, so it remains to prove that h1;1.Z/D 1.

Table 3. Three 7� 7 minors used to verify smoothness.

¹8;19;29;43;55;61;79ºI ¹U0;U1;U2;U3;U5;U6;U7º

¹7;19;31;37;55;67;77ºI ¹U0;U1;U2;U3;U4;U5;U9º

¹9;13;31;43;53;67;79ºI ¹U0;U1;U2;U3;U4;U8;U9º
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To figure out this last Hodge number, we use Macaulay to calculate �.Z;

O.2KZ// D 10 (again working modulo 263). For this calculation, we use the res-
olution to compute the canonical bundle KZ as in Hartshorne’s book, as Ext from
the canonical bundle of the ambient space to OZ , and then we tensored it with itself
to get 2KZ and then calculated the Hilbert polynomial of the corresponding graded
module to get �.Z;2KZ/. Now by Riemann–Roch �.Z;2KZ/ D K2Z C �.Z;OZ/
and we know that �.Z;OZ/D 1, and thus K2Z D 9. Now Noether’s formula finishes
the proof that Z is a fake projective plane.

We see that 2K is numerically equivalent to D. We calculate

Hom
�
O.K/;O.D/

�
D 0

by working modulo 263 and semicontinuity. This implies that

h0
�
Z;O.D �K/

�
D 0D h2

�
Z;O.2K �D/

�
:

This implies that h0.Z;O.2K �D//� 1, so O.2K/'O.D/. So the fake projective
plane Z is embedded via a bicanonical embedding.

Remark 2.2
Consider the closed subscheme C of Z cut out by U0 D 0 and the following eighteen
quadrics, which fall into six orbits under the Z3-action

D
U0;U

2
1 �U6U7C

1

8
.�5� i

p
7/U7U9;U4U6 �

1

8
.1C i

p
7/U3U8;

U2U4C
1

8
.1C i

p
7/U8U9;U1U4CU3U6C

1

8
.5C i

p
7/U3U9;

U1U2CU5U8;U
2
4 C

1

8
.1C i

p
7/U2U9C

1

8
.5C i

p
7/U4U7;

twelve images of the six quadrics under Z3
E
:

By calculating its Hilbert polynomial, we see that it is 1-dimensional, with the
total degree of 1-dimensional components equal to 18. This means that C is a (man-
ifestly Z7-invariant) curve on Z. Moreover, by computing Hilbert polynomials of
hU0i C I

2 and hU0i, we see that the square of this ideal I lies in hU0i. Therefore,
we see that the bicanonical divisor 2KZ is linearly equivalent to 2C . By Lemma 2.3,
this implies that Z=Z7 has a minimal model which is a .2; 4/-elliptic surface. It also
identifies Z as the pair of fake projective planes which is .aD 7;p D 2;;;D327/ in
the Cartwright–Steger classification (see [4]), or as one of the three pairs in the class
.k DQ; `DQ.

p
�7/;pD 2;T1 D;/ (see [3], [23]).
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LEMMA 2.3
Let W be a fake projective plane with Aut.W / D Z7 W Z3. Then the following are
equivalent:
(1) W contains an effective Z7-invariant curve C with C 2 D 9,
(2) the action of Z7 on W fixes a nontrivial element in H1.W;Z/,
(3) H1.W;Z/D Z42,
(4) the minimal resolution of W=Z7 is a .2; 4/-elliptic surface.

Proof
On a fake projective plane, an effective curve C with C 2 D 9 is a member of the linear
system jKW C t j for some nonzero t 2 Tor Pic.W /ŠH1.W;Z/. For a subgroup G
of Aut.W /, the linear system jmKW C t j is G-invariant if and only if t is also. For
a cyclic subgroup G of Aut.W / a complete linear system is G-invariant if and only
if a member of the system is G-invariant. This proves the equivalence of (1) and
(2). These two are equivalent to (3) by [5, Corollary 3.4] and therefore to (4) by
the classification of [14] on the possible geometric structures of quotients of fake
projective planes.

Furthermore, if H1.W;Z/ D Z42, a Z7-invariant, nontrivial, 2-torsion is unique
(see [5, Corollary 3.4]), then it is also Aut.W /-invariant.

Remark 2.4
We have the following two comments.

(1) It is well known (see [9, Example 9.1.3(ii)]) that a local complete intersection
subscheme of PN is the scheme-theoretic intersection of N C 1 hypersurfaces. Thus
our surface Z can be defined scheme-theoretically by ten equations, in which case
the eighty-four equations seem too many. However, it is important for constructing
the resolution to cut it out ideal-theoretically. Moreover, Macaulay2 works smoothly
with the saturated ideal generated by the eighty-four cubics.

(2) One of the referees kindly informed us that only fifteen among the eighty-four
equations were enough to define Z scheme-theoretically—for example,

¹3; 7; 11; 19; 23; 31; 35; 40; 43; 53; 55; 67; 71; 79; 83º:

3. Our explanation begins: The double cover of the resolution of the Z7-quotient
of a fake projective plane

The equations of Section 2 appear quite mysterious, so we will spend the rest of this
article explaining their origins. Our general construction can be roughly summarized
in the following commutative diagram of morphisms, with notation that will be used
throughout the remainder of the present article.
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P2fake: a fake projective plane with AutD Z7 W Z3 such that the minimal resolution
Y of P2fake=Z7 is a .2; 4/-elliptic surface;

X : the universal double cover of Y .

B2 dP2fake X
�
�! P3

& . & . &

P2fake Y P1

& . & .

P2fake=Z7 P1

(3.1)

In this section, we will describe the known results of [14], [15], and [17] on
the quotients of fake projective planes with automorphism group of order 21 by the
subgroup of order 7. Specifically, we describe the aspects of the geometry of Y and
X in (3.1) that will be used later to find the equation of �.X/� P3.

Let P2fake be a fake projective plane with noncommutative automorphism group
G21 Š Z7 W Z3. Consider the quotient P2fake=Z7 of P2fake by the (normal) Sylow 7-
subgroup of G21. It is a singular surface of Kodaira dimension 1 with three quo-
tient singular points of type 1

7
.1; 3/ and it inherits an order 3 automorphism which

permutes these singular points. The minimal resolution Y of P2fake=Z7 is an elliptic
surface over CP1 with h2;0.Y /D h1;0.Y /D 0, and two multiple fibers with multi-
plicities .2; 3/ or .2; 4/, as shown in [14]. The Hodge numbers of Y are given by

h0;0.Y /D h2;2.Y /D 1; h1;1.Y /D 10; hp;q.Y /D 0 otherwise.

Throughout the rest of the present work, we will consider the fake projective planes
which lead to elliptic surfaces Y with multiple fibers of multiplicities .2; 4/. By the
classification of [3] and [23] there is exactly one such conjugate pair of fake pro-
jective planes. (The other two conjugate pairs with AutŠ G21 lead to .2; 3/-elliptic
surfaces.) Let us denote by 4FY the multiplicity 4 fiber and by 2F2;Y the multiplicity
2 fiber. We summarize the results of [14], [15], and [17].

The preimages of 1
7
.1; 3/ singular points in Y are three pairwise disjoint chains

of spheres

S �B �C; S 0 �B 0 �C 0; S 00 �B 00 �C 00

with S2 D .S 0/2 D .S 00/2 D�3 and the squares of the rest equal to �2. The canonical
class KY is numerically equivalent to FY , and the elliptic fibration Y ! P1 is given
by the linear system

j4FY j D j2F2;Y j D j4KY j;

(i.e., a general fiber is linearly equivalent to 4FY ). The curves S , S 0, and S 00 are
4-sections of the fibration; that is,
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FY S D FY S
0 D FY S

00 D 1:

The curves B , C , and their translates are part of an I9-fiber of Y ! P1 and the order
3 automorphism group acts fiberwise. There are three additional I1-fibers, some of
which may be the multiple fibers.

The structure of the I9-fiber will be very important in what follows. We denote
its nine components by

A�B �C �A0 �B 0 �C 0 �A00 �B 00 �C 00 �A:

The curve S intersects B transversely and does not intersect C , B 0, C 0, B 00, C 00. The
I9-fiber is not a multiple fiber (i.e., it is equivalent to 4FY by [17, Theorem 2.3]), and
thus we see that S must intersectA,A0, andA00 in three points total. These intersection
numbers determine the intersection numbers of S 0 and S 00 with A, A0, A00 because of
the order 3 automorphism.

It is easy to see that the classes of the curves

A;B;C;A0;B 0;C 0;A00;B 00;C 00; S;S 0; S 00

generate a sublattice of rank greater than or equal to 10 inside the Picard lattice of Y ,
the Néron-Severi group of Y modulo torsion. (The first nine curves already generate
a rank 9 sublattice.) By Poincaré duality, the Picard lattice of Y is unimodular of
signature .1; 9/, thus the sublattice must have rank 10 and the discriminant a square
integer, which puts strong restrictions on the intersection numbers. It was observed in
[15, p. 1676] that the only possibilities are

Case 1: SAD 1; SA0 D 0; SA00 D 2I

Case 2: SAD 0; SA0 D 2; SA00 D 1:
(3.2)

In the following, we will show that Case 1 cannot occur.
The fundamental group of a .2; 4/-elliptic surface is of order 2 (see [8]), and

thus the surface Y has an unramified double cover X which is part of the diagram
(3.1). It comes from a double cover P1 ! P1 of the base of the fibration ramified
over the images of FY and F2;Y . The preimage of the canonical divisor class KY is
the canonical class KX of X and is numerically equivalent to the preimage F of FY .
Since on a simply connected surface a numerical equivalence is a linear equivalence,
KX is linearly equivalent to F . We will denote by F2 the preimage of F2;Y . Then the
elliptic fibration X! P1 is given by the linear system

j2F j D jF2j D j2KX j;

and has only one multiple fiber 2F (with multiplicity 2). In particular, X has
Kodaira dimension 1. Since X is simply connected, h1;0.X/D 0. Since �.X;OX /D
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2�.Y;OY /D 2, we get h0.X;KX /D 1. This implies that

h0;0.X/D h2;2.X/D h2;0.X/D h0;2.X/D 1; h1;1.X/D 20;

hp;q.X/D 0 otherwise,

(i.e., X has the Hodge numbers of K3 surfaces). Its Jacobian fibration is an elliptic
surface over P1 with a section, with no multiple fiber, and with singular fibers of the
same type as those of X (this is true for Jacobian fibration of any genus 1 fibration;
see [6]), and thus has trivial canonical class and the sum of Euler numbers of singular
fibers 24, and hence is a K3 surface.

The preimage under X ! Y of the curve S is S1 C S2, where Si are disjoint,
smooth, rational curves with S2i D�2. Each of the curves Si is a 2-section of X !
CP1. Similarly, we define S 01, S 02, S 001 , and S 002 . The preimage of the I9-fiber A�B �
� � � �C 00 �A consists of two disjoint I9-fibers

A1 �B1 � � � � �C
00
1 �A1; A2 �B2 � � � � �C

00
2 �A2:

We arrange the indexing so that we get six .�3/� .�2/� .�2/ chains of CP1 curves

Si �Bi �Ci ; S
0
i �B

0
i �C

0
i ; S
00
i �B

00
i �C

00
i ; i 2 ¹1; 2º:

As before, we would like to determine the possible intersection numbers of the
twenty-four curves

S1; : : : ; S
00
2 ;A1; : : : ;C

00
2

with each other. These intersections are uniquely determined by the nonnegative inte-
gers S1A1, S1A01, S1A001, S2A1, S2A01, S2A001, which are subject to Si .A1 C A2/D
SA, Si .A01CA

0
2/D SA

0, Si .A001 CA
00
2/D SA

00 from (3.2). The resulting intersection
matrix has to have rank at most 20, because the rank of the Picard group does not
exceed h1;1.X/.

A simple computer calculation shows that only Case 2 of (3.2) is possible and,
moreover, it holds that

S1A1 D S2A1 D 0; S1A
0
1 D S2A

0
1 D 1; S1A

00
1 D 0; S2A

00
1 D 1; (3.3)

(i.e., S1 intersects at one point exactly B1 and A01 of the first I9-fiber, and exactly A02
and A002 of the second; S2 intersects exactly B2 and A02 of the second I9-fiber, and
exactly A01 and A001 of the first). This gives a rank 19 intersection matrix. This rank is
not the maximum possible h1;1.X/D 20, and thus leaves a possibility that F or F2
is of type I2 (i.e., FY or F2;Y on Y is of type I1).

The following is crucial in our approach.
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PROPOSITION 3.1
LetD be the divisor 3F CS1CS2 onX which is the pullback of the divisor 3FY CS
from Y . ThenD2 D 6, h0.D/D 4 and the linear system jDj is basepoint free. It gives
a birational map � WX!CP3 whose image is a sextic surface. Moreover,
(1) F is an elliptic curve and maps 2 W 1 onto a line;
(2) each I9-fiber maps to a union of a conic and two lines;
(3) a general fiber maps birationally onto a plane quartic curve with nodes at the

points �.S1/ and �.S2/;
(4) F2, if irreducible, maps 2 W 1 onto a conic.

Proof
We see immediately that

D2 D .3F C S1C S2/
2 D 6FS1C 6FS2C S

2
1 C S

2
2 D 12� 3� 3D 6:

Therefore, �.D/D 1
2
D.D �F /C �.OX /D

1
2
.6� 2/C 2D 4.

Consider the short exact sequence

0!O.3F /!O.D/!O.D/jS1 ˚O.D/jS2! 0: (3.4)

We know that the bicanonical map ofX is the elliptic fibration and has P1 as its image.
Thus the canonical ring of X is a polynomial ring with generators of weights 1 and 2,
corresponding to F and F2, so h0.3F /D 2. Together with the Euler characteristics
calculation and h2.3F /D h0.�2F /D 0, this implies that h1.3F /D 0.

Because of .3F C Si /Si D 3� 3D 0, we know that the restrictions of the sheaf
O.D/ to either Si is isomorphic to the structure sheaf. Thus the long exact sequence
in cohomology associated to (3.4) implies that dimH 0.X;O.D//D 2C 1C 1D 4.
The same long exact sequence implies h1.D/D h2.D/D 0.

Let us now prove that H 0.X;O.D// is basepoint free. The long exact sequence
associated to (3.4) implies that there are sections which restrict to nonzero constants
on S1 and S2, and the base locus of H 0.X;O.D// is contained in that of H 0.3F /.
We know that this space is generated by the sections with divisors 3F and F C F2.
Therefore, the base locus ofH 0.X;O.D// is contained in F . Consider the short exact
sequence

0!O.2F C S1C S2/!O.D/!O.D/jF ! 0:

Since Si .2F C S1C S2/ < 0, then either Si is a base component of j2F C S1C S2j,
and hence h0.2F CS1CS2/D h0.2F /D 2. Since h2.2F CS1CS2/D 0, Riemann–
Roch implies that h1.2F C S1 C S2/D 0 and h0.O.D/jF /D 2. If F is irreducible,
then it is an elliptic curve and the restriction of O.D/ to F is the full linear system
of degree 2, and hence it is basepoint free, which implies that so is H 0.X;O.D//.
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Furthermore, F maps 2 W 1 onto a line, which passes through the points �.S1/ and
�.S2/. If F is of type I2 (i.e., F D R1 C R2 for two .�2/-curves Ri ), then the
restriction of O.D/ to either Ri is the full linear system of degree one, hence it is
basepoint free and so isH 0.X;O.D//, andRi maps 1 W 1 onto a lineLi . SinceR1 and
R2 intersect at two distinct points, we see that L1 D L2, but then S1 must intersect
both R1 and R2, contradicting S1F D 1.

Looking at the intersection number of D with each component of the I9-fibers,
we easily see that each I9-fiber maps to a union of a conic and two lines. Since the
image of a fiber is contained in a hyperplane section of �.X/, the degree of �.X/ is
at least 4, hence must be 6.

The restriction ofD to a general smooth fiberH of X! P1 gives the short exact
sequence

0!O.F C S1C S2/!O.D/!O.D/jH ! 0:

The corresponding long exact sequence shows that H 0.X;O.D// restricts to a 3-
dimensional linear subspace of the 4-dimensional space of sections of a degree 4 line
bundle on the elliptic curve H . The corresponding P2 contains the line which is the
image of F . The images of the fibers H are degree 4 curves in P2 of genus 1, unless
they are double covers of conics. In the latter case, �.X/ would have degree less than
6, which is a contradiction.

Assume that F2 is irreducible. Then it is an elliptic curve, and the corresponding
long exact sequence shows that H 0.X;D/ restricts to a 3-dimensional linear sub-
space of the 4-dimensional space H 0.F2;DjF2/. Let a, a0, possibly a D a0, be the
intersection points of F2 and S1. Then F2 \S2 D ¹aC t; a0C tº for a fixed 2-torsion
point t 2 F2, because the deck transformation of X acts freely on F2 and switches
S1 and S2. Let � W F2! P1 be the double cover given by the degree 2 linear system
jaC a0j on F2. We claim that

H 0.X;D/jF2 D �
�H 0

�
P1;O.2/

�
as 3-dimensional subspaces of H 0.F2;DjF2/. To prove this, consider the subspace

W1 WDH
0.X; 3F C S1/�H

0.S2/�H
0.X;D/:

Since h0.3F / D 2, h1.3F / D 0, and O.3F C S1/ restricts to the structure sheaf
of S1, we see that h0.3F C S1/ D 3, and hence dimW1 D 3. It is easy to com-
pute h0.F C S1/ D 1, h1.F C S1/ D 0, which implies that H 0.3F C S1/ restrict
to the full linear system of H 0.F2; .3F C S1/jF2/. The latter space equals the 2-
dimensional space H 0.F2; a C a

0/ of the degree 2 line bundle OF2.a C a
0/. Thus

W1 restricts to the 2-dimensional space corresponding to the 1-dimensional linear
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system ja C a0j C .a C t / C .a0 C t /. Since .a C t / C .a0 C t / 2 ja C a0j, this 1-
dimensional linear system belongs to the linear system of ��H 0.P1;O.2//. Similarly,
W2 WDH

0.X; 3F C S2/�H
0.S1/�H

0.X;D/ restricts to the 2-dimensional space
corresponding to the linear system aCa0Cj.aCt /C.a0Ct /j. The two 2-dimensional
spacesWi jF2 in ��H 0.P1;O.2// have 1-dimensional intersection, which corresponds
to the unique divisor aC a0 C .aC t /C .a0 C t /. The claim and the last assertion is
proved.

We remark that F2, if reducible, maps onto a union of two conics.

Remark 3.2
We eventually expected that a fake projective plane can be identified as such once we
have its explicit equations, as we did in Section 2. As a consequence, we felt free to
pursue the most likely scenarios rather than try to exhaustively exclude all degenerate
cases, since the justification of our approach will be in its final result. This liberating
philosophy is similar to the physicists’ approach to mathematics: anything goes as
long as the final answers concur with experiments. In particular, we assume that F2
is irreducible.

4. Breakthrough: Equation of the image of the double cover X
In this section, we describe the major breakthrough that allowed us to eventually write
down the equations of the fake projective plane. Specifically, we describe the method
that allowed us to find the Z2-invariant sextic in CP3, which gives a (highly singular)
birational model of the double cover X of the resolution of the Z7-quotient.

The action of the covering involution � onX leads to an involution onH 0.X;D/

which has 2-dimensional eigenspaces. We observe that there are two natural, up-to-
scaling elements y0 and y1 of H 0.X;O.D// which correspond to divisors

F CF2C S1C S2; 3F C S1C S2;

respectively. We will linearize the action of the covering involution � so that �.y0/D
y0 and �.y1/ D �y1. We pick other basis elements of the eigenspaces and denote
them by y2 and y3.

We know that the images of S1 and S2 are disjoint points on .0 W 0 W � W �/ which
are permuted by the involution. We can scale y2 and y3 to ensure that these are .0 W
0 W �1 W 1/ and .0 W 0 W 1 W 1/, respectively. For generic a, the divisor of y0 � ay1 is
F1C S1C S2CHa, where Ha is a fiber of X!CP1. Note that S1 and S2 intersect
Ha in two points each. These points need to map to the the same point in CP3, which
leads to the statement in Proposition 3.1 that the image of Ha is a nodal plane quartic
with two nodes. We also know that F2 maps 2 W 1 onto a conic.
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Putting it all together, the geometry of � WX!CP3 implies the following.
� The involution acts by yi 7! .�1/iyi . The sextic f is invariant with respect to

this involution.
� The sections y0 and y1 are zero on S1 and S2. These are automatically zero

on F .
� The section y1 D 0 corresponds to the divisor 3F C S1 C S2 and the section

y0 D 0 corresponds to F C F2 C S1 C S2. The image of F is .0 W 0 W � W �/.
This is a 2 W 1 cover, so f D 0 has singularities along .0 W 0 W � W �/.

� For a¤ 0 the restriction of f to x0 D ax1 is

f .ay1; y1; y2; y3/D y
2
1ga.y1; y2; y3/

where ga D 0 is a degree 4 curve which has nodes at .0 W ˙1 W 1/.
� For a¤ 0 the quartic ga D 0 is irreducible, except for aD˙1 that correspond

to the images of the I9 fibers. (We can fix aD˙1 for the location of I9 fiber
by scaling y0 and y1.)

� The restriction to y1 D 0 is given by

f .y0; 0; y2; y3/D y
6
0 :

Indeed, we must have a multiple of F1 (since S1 and S2 map to points). This
means that this should be a multiple of y0 and we can scale it to be y60 .

� The restriction of f to y0 D 0 is given by

f .0;y1; y2; y3/D y
2
1h
2
0.y1; y2; y3/

where h0 D 0 is a � -invariant conic that passes through .0 W ˙1 W 1/. The sur-
face f D 0 has singularities along y0 D h0 D 0.

There are additional restrictions on f D 0 that come from the geometry of the I9
fibers. Without loss of generality, let us assume that the fiber at y0 D y1 corresponds
to the image of the cycle of curves

A1 �B1 �C1 �A
0
1 �B

0
1 �C

0
1 �A

00
1 �B

00
1 �C

00
1 �A1

and the y0 D�y1 fiber corresponds to the cycle A2 � � � � �C 002 �A2.
The intersection numbers (3.3) imply that

DA01 D 2; DA001 D 1; DB1 D 1

so the degree 4 genus 1 curve with two nodes degenerates into two lines �.A001/ and
�.B1/ and a conic �.A01/. The other six rational curves of this I9 fiber are contracted
to singular points. The line �.B1/ must pass through �.S1/D .0 W 0 W �1 W 1/ as does
the conic �.A01/. The line �.A001/ passes through the other node �.S2/D .0 W 0 W 1 W 1/.
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These lines intersect at some point P which we can set to be P D .1 W 1 W 0 W 0/ by
adding multiples of y0 and y1 to y2 and y3, respectively. Moreover, we see that

P D �.B 001 /D �.C
00
1 /D �.A1/

so the surface �.X/ has at least an A3 type singularity at P . In particular, the partial
derivatives and the derivative of the Hessian matrix vanish at P . In addition, we have a
singular point �.C1/ at the intersection of the line �.B1/ and the conic �.A01/ which
is different from �.S1/D .0 W 0 W �1 W 1/. We also have a singular point

�.B 01/D �.C
0
1/

at the intersection of the conic �.A001/ and the line �.A001/ that is different from
�.S2/D .0 W 0 W 1 W 1/.

We immediately see from the intersection numbers that

DS 01 DDS
0
2 DDS

00
1 DDS

00
2 D 3:

We focus specifically on S 001 . Note that S 001 intersects both B 001 and A1, which means
that �.S 001 / passes through .1 W 1 W 0 W 0/ twice. Thus it should be a planar degree three
rational nodal curve. This turned out to be a key observation that allowed us to get
enough equations on the coefficients of f to solve for it.

PROPOSITION 4.1
The sextic equation f .y0; y1; y2; y3/D 0 where

f D 28y60 � .42� 2i
p
7/y40y

2
1 � 4i

p
7y20y

4
1 C 56y

2
0y

2
1y

2
2 � .14C 22i

p
7/y40y1y3

� .7� 13i
p
7/y20y

2
1y

2
3 � .77C 17i

p
7/y41y

2
3

C .21� 31i
p
7/.y30y1y2y3 � y0y

3
1y2y3/

� .28� 20i
p
7/y31y3.y

2
1 C y

2
2 � y

2
3/

C .14C 2i
p
7/y21

�
y41 C 2y

2
1y

2
2 C .y

2
2 � y

2
3/
2
�

C .42C 2i
p
7/
�
y20y

3
1y3C y0y

2
1y2.�y

2
0 C y

2
1 C y

2
2 � y

2
3/
�

cuts out a surface which has the same expected properties as the image of the double
cover X under the map given by j3F C S1C S2j.

Remark 4.2
It is clear that complex conjugation provides another surface with the same properties
that comes from the complex-conjugate fake projective plane.
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We remark that the formula of Proposition 4.1 was obtained by writing down
a generic invariant sextic that satisfied the properties and then using Mathematica
software package to write down equations on the coefficients. The equations are too
complicated to be solved symbolically, but numerical solutions give values that “look
like” algebraic numbers. This allow us to identify a putative equation, which can then
be checked to give the desired properties.

We now describe the images of the twenty-four curves S1; : : : ; S 002 ;A1; : : : ;C
00
2 on

�.X/. The curve S 001 was found in the process of getting Proposition 4.1. The curve S 002
is obtained by simply applying the involution � . It took a bit of effort to find S 01. The
idea is that there should be an order 3 automorphism that acts fiberwise on X!CP1

and sends S1! S 01! S 001 . This automorphism is a lift of the order 3 automorphism
acting on the quotient P2fake=Z7. Each of the curves S1, S 01, and S 001 have two points in
the generic fiber, which give two orbits under addition of an element of order 3. Thus,
if we parameterize S 001 as S 001 .t/ there should be a point S 01.t/ in the fiber so that

S 01.t/C S
00
1 .t/D .S1/1C .S1/2

where .S1/i are two preimages of the node �.S1/. Since the preimage of the class
of the line in CP2 that contains the fiber is .S1/1 C .S1/2 C .S2/1 C .S2/2, we see
that the fourth intersection point of the line through the node �.S2/D .0 W 0 W 1 W 1/
and S 001 .t/ with the quartic image of the fiber should give parameterization of S 01. We
write the corresponding equations in Table 4.

Remark 4.3
The construction of S 01 has an additional advantage of providing us with a rational
function on Y which has well-understood zeros and poles. Specifically, the section�

y30 � y
2
0y1 � y0y

2
1 C y

3
1 C

1

2
.1C i

p
7/.y0 � y1/y1.y2 � y3/

C
1

4
.�1C i

p
7/y1.y2 � y3/

2
�

defines a (nonnormal) cubic cone with vertex .0 W 0 W 1 W 1/ that contains S 01 and S 001 .
Its symmetrization fcones.y0; y1; y2; y3/ given by�

y30 � y
2
0y1 � y0y

2
1 C y

3
1 C

1

2
.1C i

p
7/.y0 � y1/y1.y2 � y3/

C
1

4
.�1C i

p
7/y1.y2 � y3/

2
�

�
y30 C y

2
0y1 � y0y

2
1 � y

3
1 �

1

2
.1C i

p
7/.y0C y1/y1.y2C y3/

�
1

4
.�1C i

p
7/y1.y2C y3/

2
�
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Table 4. Images of curves on X under the map � WX!CP3 (The equations are either
parametric or nonparametric; the curves �.S2/; : : : ; �.C 002 / can be found by applying

�.y0 W y1 W y2 W y3/D .y0 W �y1 W y2 W �y3/ to �.S1/; : : : ; �.C 001 /.)

Curves Equations

�.F / y0 D y1 D 0

�.F2/ y0 D 0;y
2
1 C y

2
2 C

1
4
.�1C 3i

p
7/y1y3 � y

2
3 D 0

�.S1/ .0 W 0 W �1 W 1/

�.S 01/ y0 D
1
8
.11� i

p
7/t C 1

8
.�3C i

p
7/t3

y1 D t
3

y2 D
1
8
.11� i

p
7/C 1

8
.�1C 3i

p
7/t � 1

8
.5C i

p
7/t2C 1

8
.3� i

p
7/t3,

y3 D�
1
16
.9C 5i

p
7/C 1

16
.11� i

p
7/t C 1

16
.21C i

p
7/t2 � 1

16
.7� 5i

p
7/t3

�.S 001 / y0 D
1
8
.11� i

p
7/t C 1

8
.�3C i

p
7/t3

y1 D t
3

y2 D
1
16
.�9� 5i

p
7C .11� i

p
7/t/.�1C t2/

y3 D
1
8
.11� i

p
7C .�1C 3i

p
7/t/.�1C t2/

�.A1/ .1 W 1 W 0 W 0/

�.B1/ y0 D y1, y2 D�y3
�.C1/ .1 W 1 W � 1

4
.3C i

p
7/; 1

4
.3C i

p
7//

�.A01/ y0 D y1,
1
2
.11� i

p
7/y21 C

1
4
.11� i

p
7/y1y2C y

2
2 C

1
2
.�1C 3i

p
7/y1y3 � y

2
3 D 0

�.B 01/ .�1 W �1 W 1
2
.1� i

p
7/ W 1

2
.1� i

p
7//

�.C 01/ .�1 W �1 W 1
2
.1� i

p
7/ W 1

2
.1� i

p
7//

�.A001/ y0 D y1, y2 D y3
�.B 001 / .1 W 1 W 0 W 0/

�.C 001 / .1 W 1 W 0 W 0/

gives a � -invariant section of H 0.X; 6D/ which contains S 01 C S
0
2 C S

00
1 C S

00
2 . In

fact, we were able to show that its degree 36 intersection curve with �.X/ is fully
accounted for by the curves from our list of 24 rational curves as well as F . The
� -invariant rational function

fcones.y0; y1; y2; y3/

.y20 � y
2
1/
3

on X gives a rational function on Y whose divisor is

2A� 3A0CA00 �B �B 0C 2B 00 � 2C C 2C 00 � 2S C S 0C S 00:

The curves A1; : : : ;C 001 are either contracted to points or map isomorphically to
lines or conics in the plane y0 D y1, as indicated in Table 4.

An important part of our calculations will be based on finding a putative normal-
ization of the ring

CŒy0; y1; y2; y3�=
˝
f .y0; y1; y2; y3/

˛
:



EXPLICIT EQUATIONS OF A FAKE PROJECTIVE PLANE 1153

PROPOSITION 4.4
The rational functions

Oy4 D
y30
y1

Oy5 D
.y21 C y

2
2 C

1
4
.�1C 3i

p
7/y1y3 � y

2
3/y1

y0

lie in the normalization of CŒy0; y1; y2; y3�=hf .y0; y1; y2; y3/i in its field of frac-
tions. These elements are odd with respect to the involution � and are homogeneous
with grading 2.

Proof
It is straightforward to see that Oy4 and Oy5 satisfy monic quadratic equations with
coefficients in the ring. The parity and grading are obvious.

Remark 4.5
We believe that y0; : : : ; y3; Oy4; Oy5 generate the normalization of the ring CŒy0; y1; y2;

y3�=hf .y0; y1; y2; y3/i which is isomorphic to
M
k�0

H 0
�
X;O.kD/

�
:

Moreover, we have calculated generators of the ideal of relations between y0; : : : ; y3;
Oy4; Oy5. Since we do not need this information for our purposes, we will not present it
in the present article. However, we do use the fact that Oy4 and Oy5 give odd sections of
H 0.X;O.2D//.

5. Order 3 automorphism
An important feature of X is an order 3 automorphism which is a lift of the order
3 automorphism acting on the quotient P2fake=Z7. In this section, we describe how to
find an explicit formula for it in terms of the birational automorphism of the sextic
surface �.X/�CP3.

PROPOSITION 5.1
Let Y0 D

y0
y1

, Y2 D
y2
y1

and Y3 D
y3
y1

be the generators of the field extension Rat.X/�
C. The automorphism of order 3 sends .Y0; Y2; Y3/ to .Y0; Y 02; Y

0
3/ given by Table 5.

Its inverse sends .Y0; Y2; Y3/ to .Y0; Y 002 ; Y
00
3 / given by Table 6.
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Table 5. Automorphism of order 3 W .Y0; Y2; Y3/ 7! .Y0; Y
0
2; Y
0
3/.

Y 02 D
.3Ci
p
7/

8
Y�10 ..�21iC 31

p
7/Y 22 C .�35iC 9

p
7/Y 23 //

�1

.7.9iC 5
p
7/Y 40 Y3C 2Y

2
0 .4.21iC

p
7/Y 22 � .7iC 11

p
7/Y3/

CY3.�49i� 13
p
7� .49iC 13

p
7/Y 22 C 8.�7iC 5

p
7/Y3C .49iC 13

p
7/Y 23 /

�Y0..�21iC 31
p
7/Y 32 CY2Y3.112iC 48

p
7C 21iY3 � 31

p
7Y3///

Y 03 D
.�3iC

p
7/

8
Y�10 ..�21iC 31

p
7/Y 22 C .�35iC 9

p
7/Y 23 //

�1

..�21� 31i
p
7/Y 32 CY0Y

2
2 .�168C 8i

p
7C 49Y3 � 13i

p
7Y3/

CY0Y
2
3 .56C 40i

p
7� 49Y3C 13i

p
7Y3/CY2.�21� 31i

p
7

C7.13C 7i
p
7/Y 40 C 8.21� i

p
7/Y3C .21C 31i

p
7/Y 23

CY 20 .�70� 18i
p
7C .�56� 40i

p
7/Y3///

Table 6. Inverse automorphism of order 3 W .Y0; Y2; Y3/ 7! .Y0; Y
00
2 ; Y

00
3 /.

Y 002 D .�20� 4i
p
7� 4i.�9iC

p
7/Y 50 Y2C .34� 30i

p
7/Y3C .134C 14i

p
7/Y 23

�.15� 43i
p
7/Y 33 � 48Y

4
3 � .1C 3i

p
7/Y 53 C 4iY 60 .5i�

p
7C 2

p
7Y3/

CY 42 .�20� 4i
p
7C .�1� 3i

p
7/Y3/C 2Y

3
0 Y2.36C 4i 7

p
C.3C 5i

p
7/Y 22

C.�5C 15i
p
7/Y3C .�16C 2i

p
7/Y 23 /CY

2
2 .�40� 8i

p
7C 33.1� i

p
7/Y3

C.68C 4i
p
7/Y 23 C .2C 6i

p
7/Y 33 /C 2Y

2
0 .10C 2i

p
7C 8Y 42 C .�26C 10i

p
7/Y3

C.�29� 9i
p
7/Y 23 C .8� 4i

p
7/Y 33 �Y

2
2 Y3.17C i

p
7C 8Y3//CY

4
0 .20C 4i

p
7

C2.9C i
p
7/Y3C 4.3� i

p
7/Y 23 C .7C 5i

p
7/Y 33 CY

2
2 .�48C 16i

p
7� .7C 5i

p
7/Y3//

CY0Y2.�36� 4i
p
7C .5� i

p
7/Y 42 C 10.1� 3i

p
7/Y3C 52Y

2
3 C .5� i

p
7/Y 43

C2iY 22 .13i� 7
p
7C .5iC

p
7/Y 23 ///=.2Y0.�3i�

p
7C .3iC

p
7/Y 20 � 2iY 22

C.�5iC
p
7/Y3C .iC

p
7/Y 23 �Y2.�5iC

p
7C .�iC

p
7/Y3//

.�3i�
p
7C .3iC

p
7/Y 20 � 2iY 22 � .5i�

p
7/Y3C .iC

p
7/Y 23 CY2.�5iC

p
7

C.�iC
p
7/Y3///

Y 003 D .8i
p
7Y 60 Y2CY

5
0 .�40� 8i

p
7C .26C 2i

p
7/Y3/C 2Y

3
0 .40C 8i

p
7

C2.�17C 11i
p
7C .1� 2i

p
7/Y 22 /Y3C .�39� 11i

p
7/Y 23 C .11� 3i

p
7/Y 33 /

C2Y 20 Y2.�4i
p
7C .33� 3i

p
7/Y3C .25C 9i

p
7/Y 23 C 4i.iC

p
7/Y 33

C4Y 22 .�4� i
p
7C .1� i

p
7/Y3//CY2.8i

p
7C .5� i

p
7/Y 42 C 2i.27iC

p
7/Y3

C.�23� 17i
p
7/Y 23 C .8� 8i

p
7/Y 33 C .5� i

p
7/Y 43 CY

2
2 .5C 7i

p
7C 8i.iC

p
7/Y3

C2i.5iC
p
7/Y 23 //CY

4
0 ..7� 3i

p
7/Y 32 C iY2.�8

p
7C 4.3iC

p
7/Y3C .7iC 3

p
7/Y 23 //

CY0.�40� 8i
p
7C .42� 46i

p
7/Y3C 2.83C 7i

p
7/Y 23 C .�14C 46i

p
7/Y 33

�48Y 43 C .�1� 3i
p
7/Y 53 CY

4
2 .�4� 4i

p
7C .�1� 3i

p
7/Y3/

C2Y 22 .�44C 4i
p
7C .�6� 16i

p
7/Y3C .26C 2i

p
7/Y 23 C .1C 3i

p
7/Y 33 ///

=.2Y0.�3i�
p
7C .3iC

p
7/Y 20 � 2iY 22 � .5i�

p
7/Y3C .iC

p
7/Y 23

�Y2.�5iC
p
7C .�iC

p
7/Y3//.�3i�

p
7C .3iC

p
7/Y 20 � 2iY 22 � .5i�

p
7/Y3

C.iC
p
7/Y 23 CY2.�5iC

p
7C .�iC

p
7/Y3///

Remark 5.2
While formulas of Tables 5 and 6 are not particularly inspiring, they are far preferable
to some other formulas for the automorphism that we initially found.

Proof
It is a straightforward computer calculation to check that the formulas provide auto-
morphisms. However, it takes too long to verify that the cube of it is identity symbol-
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ically. It is, however, trivial to do so heuristically by taking a random point on �.X/
calculated to high precision and iterating the automorphism three times.

To find the automorphism, we use the fact that Y2 and Y3 are rational functions
with poles along 3F CS1CS2. So their transforms should be rational functions with
poles along 3F C S 01 C S

0
2 and 3F C S 001 C S

00
2 . We also know that Y2 C Y3 is zero

on S1 and Y2 � Y3 is zero on S2. This allows us to fix the transforms up to constants,
which can then be recovered.

6. Double cover of the fake projective plane
In this section, we explain how we found the function field of the fake projective
plane. According to [15, p. 1676], we need to attach the seventh root of the rational
function which has divisor

5S CB C 4C C 6S 0C 4B 0C 2C 0C 3S 00C 2B 00CC 00

up to multiples of 7. This divisor is divisible by 7 in the Picard group and corresponds
to the third possibility for the divisor B in [ibid], where the curves A1, A2, E1, B1,
B2, E2, C1, C2, E3 correspond to C 00, B 00, S 00, C 0, B 0, S 0, C , B , S in our notation.
The first possibility for B was ruled out, because the I9-fiber has multiplicity �D 1
by [17, p, 2 and Theorem 2.3], and the second possibility corresponds to Case 1
of (3.2), which was ruled out in Section 3. We found this function by looking at
the equation of the cubic cone with vertex .0 W 0 W 1 W 1/ that contains S 001 and S 01.
When divided by y31 it gives a divisor whose zeros and poles occur only at the named
divisors. By symmetrizing it via � and using the automorphism, we were able to get
the desired function. We denote the seventh root of this function by z; the function z7

is given in Table 7.
To find the function field of the fake projective plane we simply need to take the

invariants with respect to � that preserves z and Y3 and negates Y0 and Y2.
We also found a lift of the action of the order 3 automorphism to the field gener-

ated by Y0, Y2, Y3, z. Specifically, the action on z is given in Table 8.

7. Embedding of the fake projective plane into CP9

Let us now describe the method that allowed us to construct the equations of the fake
projective plane. By a Riemann–Roch calculation, the dimension of the bicanonical
linear system on P2fake is 10.

The pullback of the (Q-Cartier) canonical divisor via � W Y ! P2fake=Z7 satisfies

KY D �
�K

P
2
fake=Z7

�
3

7
.SCS 0CS 00/�

2

7
.BCB 0CB 00/�

1

7
.C CC 0CC 00/: (7.1)

This shows that the preimage of �.FY / on P2fake is numerically equivalent to a canon-
ical divisor. (It is actually a section of a canonical line bundle twisted by an invertible
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Table 7. Formula for z7.

z7D ..�315iC 47
p
7/2.�1CY 20 /

5.2795iC 287
p
7� 5590iY0

�574
p
7Y0C 11573iY 20 C 2689

p
7Y 20

�17556iY 30 � 4804
p
7Y 30 C 14357iY 40 C 5601

p
7Y 40 � 11158iY 50 � 6398

p
7Y 50

C5579iY 60 C 3199
p
7Y 60 C 5590iY 22 C 574

p
7Y 22 � 5590iY0Y 22 � 574

p
7Y0Y

2
2

C5994iY 20 Y
2
2 � 510

p
7Y 20 Y

2
2 C 5590iY 30 Y

2
2 C 574

p
7Y 30 Y

2
2 C 2795iY 42 C 287

p
7Y 42

C1616iY3 � 4336
p
7Y3C 5568iY0Y3C 5824

p
7Y0Y3C 3232iY 20 Y3 � 8672

p
7Y 20 Y3

�448iY 30 Y3C 11584
p
7Y 30 Y3 � 9968iY 40 Y3 � 4400

p
7Y 40 Y3C 11584iY 20 Y2Y3

C64
p
7Y 20 Y2Y3 � 17600iY 30 Y2Y3C 5696

p
7Y 30 Y2Y3C 1616iY 22 Y3

�4336
p
7Y 22 Y3C 7184iY0Y 22 Y3C 1488

p
7Y0Y

2
2 Y3 � 17174iY 23 � 638

p
7Y 23

C11606iY0Y 23 � 5186
p
7Y0Y

2
3 � 5994iY 20 Y

2
3 C 510

p
7Y 20 Y

2
3 C 5994iY 30 Y

2
3

�510
p
7Y 30 Y

2
3 � 5590iY 22 Y

2
3 � 574

p
7Y 22 Y

2
3 � 1616iY 33 C 4336

p
7Y 33

�7184iY0Y 33 � 1488
p
7Y0Y

3
3 C 2795iY 43 C 287

p
7Y 43 /.2795iC 287

p
7C 5590iY0

C574
p
7Y0C 11573iY 20 C 2689

p
7Y 20 C 17556iY 30 C 4804

p
7Y 30 C 14357iY 40

C5601
p
7Y 40 C 11158iY 50 C 6398

p
7Y 50 C 5579iY 60 C 3199

p
7Y 60 C 5590iY 22

C574
p
7Y 22 C 5590iY0Y 22 C 574

p
7Y0Y

2
2 C 5994iY 20 Y

2
2 � 510

p
7Y 20 Y

2
2 � 5590iY 30 Y

2
2

�574
p
7Y 30 Y

2
2 C 2795iY 42 C 287

p
7Y 42 C 1616iY3 � 4336

p
7Y3 � 5568iY0Y3

�5824
p
7Y0Y3C 3232iY 20 Y3 � 8672

p
7Y 20 Y3C 448iY 30 Y3 � 11584

p
7Y 30 Y3

�9968iY 40 Y3 � 4400
p
7Y 40 Y3 � 11584iY 20 Y2Y3 � 64

p
7Y 20 Y2Y3 � 17600iY 30 Y2Y3

C5696
p
7Y 30 Y2Y3C 1616iY 22 Y3 � 4336

p
7Y 22 Y3 � 7184iY0Y 22 Y3

�1488
p
7Y0Y

2
2 Y3 � 17174iY 23 � 638

p
7Y 23 � 11606iY0Y 23 C 5186

p
7Y0Y

2
3

�5994iY 20 Y
2
3 C 510

p
7Y 20 Y

2
3 � 5994iY 30 Y

2
3 C 510

p
7Y 30 Y

2
3

�5590iY 22 Y
2
3 � 574

p
7Y 22 Y

2
3 � 1616iY 33 C 4336

p
7Y 33 C 7184iY0Y 33

C1488
p
7Y0Y

3
3 C 2795iY 43 C 287

p
7Y 43 //=.4096Y

4
0 .�4iC 4iY0

C4iY 20 � 4iY 30 C 2iY2 � 2
p
7Y2 � 2iY0Y2C 2

p
7Y0Y2C iY 22 C

p
7Y 22 � 2iY3

C2
p
7Y3C 2iY0Y3 � 2

p
7Y0Y3 � 2iY2Y3 � 2

p
7Y2Y3C iY 23 C

p
7Y 23 /

2.�4i� 4iY0
C4iY 20 C 4iY 30 � 2iY2C 2

p
7Y2 � 2iY0Y2C 2

p
7Y0Y2C iY 22 C

p
7Y 22 � 2iY3

C2
p
7Y3 � 2iY0Y3C 2

p
7Y0Y3C 2iY2Y3C 2

p
7Y2Y3C iY 23 C

p
7Y 23 /

2.�21iY 22
C31
p
7Y 22 � 35iY 23 C 9

p
7Y 23 /

2/

Table 8. Automorphism of order 3 W .Y0; Y2; Y3; z/ 7! .Y0; Y
0
2; Y
0
3; z
00/.

z00D z2.�1CY 20 /
�3.1�Y0 �Y

2
0 CY

3
0 �

1
2
.1C i

p
7/.Y2 �Y3/

C 1
2
.1C i

p
7/Y0.Y2 �Y3/C

1
4
.�1C i

p
7/.Y2 �Y3/

2/.�1�Y0CY
2
0 CY

3
0

� 1
2
.1C i

p
7/.Y2CY3/�

1
2
.1C i

p
7/Y0.Y2CY3/C

1
4
.1� i

p
7/.Y2CY3/

2/

torsion line bundle). In particular, to calculate

H 0.P2fake; 2KP
2
fake
/

we can look for rational functions on P2fake which have poles of order at most 2 on the
curve F FPP which is the preimage of �.FY / and no other poles.

The action of Z7 splits the space of such functions into seven eigenspaces. Each
eigenspace consists of functions of the form zig, where g is a function from the
function field of Y , as i runs over residues modulo 7. The residual Z3 action allows
us to reduce the calculation to that of i D�1; 0; 1.

The i D 0 case is easy. The only such function up to scaling is 1.
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Now let us calculate such functions of the form zg. Consider the Cartesian prod-
uct diagram below

dP2fake! Y

# #

P2fake! P2fake=Z7

where dP2fake is the singular Galois cover of Y ramified at the nine curves S; : : : ;C 00

given by normalization of Y in the field of fractions of P2fake. We can calculate the
global sections of an invertible sheaf on P2fake in terms of the pullback of these sections

on dP2fake.

In view of (7.1) we see that the pullback of 2F FPP on dP2fake is equal to twice its

proper preimage F̂ FPP plus

6

7
.S C S 0C S 00/C

4

7
.B CB 0CB 00/C

2

7
.C CC 0CC 00/;

where 1
7
S is the reduced preimage of S under dP2fake! Y , and similarly for the other

eight curves. The divisor of z on dP2fake is

�ACA0C
5

7
S �

1

7
S 0 �

4

7
S 00C

1

7
B C

4

7
B 0 �

5

7
B 00C

4

7
C C

2

7
C 0 �

6

7
C 00:

This means that the divisor of g on dP2fake must be greater than or equal to

� 2F̂ FPP �
6

7
.S C S 0C S 00/�

4

7
.B CB 0CB 00/�

2

7
.C CC 0CC 00/� div.z/

D�2F̂ FPP CA�A0 �
11

7
S �

5

7
S 0 �

2

7
S 00 �

5

7
B �

8

7
B 0C

1

7
B 00

�
6

7
C �

4

7
C 0C

4

7
C 00:

Since g is a rational function on Y , this translates into the condition that the divisor
of g on Y is greater than or equal to

�2FY CA�A
0 � S �B 0CB 00CC 00I

in other words, it can be computed as a global section of the invertible sheaf

OY .2FY C S �ACA
0CB 0 �B 00 �C 00/

on Y , or equivalently � -invariant sections of

OX .2F C S1C S2 �A1 �A2CA
0
1CA

0
2CB

0
1CB

0
2 �B

00
1 �B

00
2 �C

00
1 �C

00
2 /:
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Note that the rational function Y 20 � 1 on Y has pole of order 2 at FY and zeros
of order 1 at the nine curves A; : : : ;C 00 of the I9 fiber. As a result, the � -invariant
section y20 � y

2
1 of H 0.X; 2D/ is 2F C I9C 2S1C 2S2. Since

.2FY C I9C 2S/� .2FY �ACA
0CB 0 �B 00 �C 00C S/

D S C 2ACA00CB C 2B 00CC CC 0C 2C 00;

we can find � -invariant sections of

OX .2F C S1C S2 �A1 �A2CA
0
1CA

0
2CB

0
1CB

0
2 �B

00
1 �B

00
2 �C

00
1 �C

00
2 /:

by looking at � -invariant sections of 2D which vanish on .SC2ACA00CBC2B 00C
C CC 0C 2C 00/. By using the calculation of Table 4, it can be seen that such sections
are multiples of y22 � y

2
3 , so the rational function in question is

.y22 � y
2
3/z

y20 � y
2
1

;

up to a multiplicative constant.
Similarly, for the z�1g, we end up looking at g which are global sections of

OY .2FY CA�A
0 �C CB 00CC 00C S 0C S 00/:

We can construct these functions as

.y20 � y
2
1/r.y0; y1; y2; y3/

fcones.y0; y1; y2; y3/

where r.y0; y1; y2; y3/ is a � -invariant section of H 0.X; 4D/ and fcones is given in
Remark 4.3. The denominator fcones is a � -invariant element of H 0.X; 6D/ which
vanishes on S 0C S 00 given by

�
y30 � y

2
0y1 � y0y

2
1 C y

3
1 C

1

2
.1C i

p
7/.y0 � y1/y1.y2 � y3/

C
1

4
.�1C i

p
7/y1.y2 � y3/

2
�

�
y30 C y

2
0y1 � y0y

2
1 � y

3
1 �

1

2
.1C i

p
7/.y0C y1/y1.y2C y3/

�
1

4
.�1C i

p
7/y1.y2C y3/

2
�
:

We know that the section .y20 � y
2
1/ of H 0.Y;D/ has divisor 2FY C 2S C I9 where

I9 D AC � � � C C
00 is the sum of the curves in the I9 fiber. As a result, the section r

should be vanishing on
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.4FY C 4S C 2I9/C .2A� 3A
0CA00 �B �B 0C 2B 00

� 2C C 2C 00 � 2S C S 0C S 00/

� .2FY CA�A
0 �C CB 00CC 00C S 0C S 00/

D 2FY C 2S C 3A
0C 3A00CB CB 0C 3B 00CC C 2C 0C 3C 00:

Importantly, we need to use not just polynomial r but also elements of the normaliza-
tion, namely, products of � -anti-invaritant degree 2 polynomials in yi with Oy4 and Oy5
from Proposition 4.4.

This is a rather delicate calculation that led us to the results in Table 9. Note
that these functions are only determined up to linear changes of variables. We have
reduced the ambiguity a bit by requiring that the first of these sections vanishes at the
fixed points of Z7 action on P2fake and have chosen constants in a noble but not very
successful attempt to make the equations more palatable.

The rational functions we have constructed so far lead to the variables U0, U1,
U4, U7 of Theorem 2.1. The other sections are obtained by applying the order 3
automorphism. We used Mathematica to tabulate numerically several dozen points
on P2fake by first picking random values for Y2 and Y3, then solving for (one of the)
values of Y0, then solving for one of the values of z by taking a seventh root of
z7. Then we looked for degree 2 and 3 polynomial equations that vanish on these
points. Mathematica is able to work with these numerical approximations by keeping
accuracy estimates. As a result, it can give solutions of expected dimension to linear
system whose coefficients are only known approximately by assuming that all minors
within the accuracy bound of zero are in fact zero. After finding approximations of

Table 9. Rational functions z�1g.

.4i.�1CY0/.1CY0/.�266iY0C 34
p
7Y0C 532iY 30 � 68

p
7Y 30 � 266iY 50 C 34

p
7Y 50

�70iY2C 46
p
7Y2 � 126iY 20 Y2 � 58

p
7Y 20 Y2C 196iY 40 Y2C 12

p
7Y 40 Y2 � 469iY0Y 22

C97
p
7Y0Y

2
2 � 63iY 30 Y

2
2 � 29

p
7Y 30 Y

2
2 � 70iY 32 C 46

p
7Y 32 C 238iY0Y3C 266

p
7Y0Y3

�238iY 30 Y3 � 266
p
7Y 30 Y3C 259iY2Y3C 41

p
7Y2Y3 � 259iY 20 Y2Y3 � 41

p
7Y 20 Y2Y3

C56iY0Y 22 Y3C 104
p
7Y0Y

2
2 Y3C 728iY0Y 23 � 56

p
7Y0Y

2
3 � 196iY 30 Y

2
3 � 12

p
7Y 30 Y

2
3

C70iY2Y 23 � 46
p
7Y2Y

2
3 � 56iY0Y 33 � 104

p
7Y0Y

3
3 //=..�35iC 23

p
7/Y0.4� 4Y0 � 4Y

2
0

C4Y 30 � 2Y2 � 2i
p
7Y2C .2C 2i

p
7/Y0.Y2 �Y3/C 2Y3C 2i

p
7Y3C i.iC

p
7/.Y2 �Y3/

2/

.�4i� 4iY0C 4iY 20 C 4iY 30 � 2iY0Y2C 2
p
7Y0Y2 � 2iY0Y3C 2

p
7Y0Y3C 2.�iC

p
7/

.Y2CY3/C .iC
p
7/.Y2CY3/

2/z/

.16i.�1CY0/.1CY0/.�133iC 17
p
7C 266iY 20 � 34

p
7Y 20 � 133iY 40 C 17

p
7Y 40

�133iY0Y2C 17
p
7Y0Y2C 133iY 30 Y2 � 17

p
7Y 30 Y2 � 217iY 22 C 37

p
7Y 22 � 49iY 20 Y

2
2

�3
p
7Y 20 Y

2
2 C 119iY3C 133

p
7Y3 � 119iY 20 Y3 � 133

p
7Y 20 Y3C 217iY 23 � 37

p
7Y 23

C49iY 20 Y
2
3 C 3

p
7Y 20 Y

2
3 //=..�35iC 23

p
7/.4� 4Y0 � 4Y

2
0 C 4Y

3
0 � 2Y2 � 2i

p
7Y2

C.2C 2i
p
7/Y0.Y2 �Y3/C 2Y3C 2i

p
7Y3C i.iC

p
7/.Y2 �Y3/

2/.�4i� 4iY0C 4iY 20
C4iY 30 � 2iY0Y2C 2

p
7Y0Y2 � 2iY0Y3C 2

p
7Y0Y3C 2.�iC

p
7/.Y2CY3/

C.iC
p
7/.Y2CY3/

2/z/
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the resulting expressions by algebraic numbers, we arrived at eighty-four degree 3
equations of Theorem 2.1.

8. Concluding remarks
We have also calculated one-hundred-forty-seven degree 7 equations among sections
of 4H on the unramified double cover of P2fake. There were no degree 6 equations. It
seems difficult to compute explicit equations of the unramified Z42-cover of P2fake.

9. Computer files
Nine computer files used for our computations are available as supplemental materi-
als with the online version of this article (see https://doi.org/10.1215/00127094-2019
-0076).

The file “Magma84FinalFPPexact” contains the calculation of the Hilbert poly-
nomial of the surface, as well as the check of Remark 2.2. This is done with exact
coefficients (i.e., in ZŒ

p
�7�).

The file “Magma84FinalFPPmodular” contains the smoothness calculation.
Specifically, it calculates three size 7 minors of the Jacobian matrix and verifies that
they have no common zeros on the surface. The calculation of each minor takes
approximately one hour on our hardware.

The file “M284FinalFPP” is a Macaulay2 file. It computes the projective resolu-
tion over a finite field, calculates the canonical bundle using this resolution, calculates
bicanonical bundle and its Euler characteristic, and, finally, calculates H 0.Z;O.D�

K//D 0. The last calculation is time-consuming; it runs between one and two hours
on our hardware.

The choices of Magma versus Macaulay are somewhat idiosyncratic. We are not
experts in either language and we used what was accessible. It is conceivable that
many of the calculations can be performed in either platform. Some linear algebra
calculations appeared faster in Magma, which also allowed us to work with exact
coefficients. On the other hand, some schemes and sheaf cohomology calculations
were more natural in Macaulay.
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