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Spectra: Let M be a closed orientable Riemannian manifold.

Eigenvalue Spectrum: The spectrum of the Laplace
operator on the space L2(M) consists of a discrete collection of
eigenvalues

0  �1  �2 . . . ! 1

where each �j has finite multiplicity mj). Define

E(M) = {(�j ,mj)}, the eigenvalue spectrum of M.

Length Spectrum: The set of lengths of closed geodesics in
M also consists of a discrete set of real numbers `j with
multiplicity. Define

L(M) = {(`j , nj)}, the length spectrum of M.
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Basic Questions:

1. What does E(M) and L(M) tell us about M?

Weyl’s Law establishes that the volume and the dimension of
M can be read o↵ E(M).

2. To what extent do E(M) and L(M) determine M up to

isometry?

Definition
Closed Riemannian manifolds M1 and M2 are isospectral if

E(M1) = E(M2).

Closed Riemannian manifolds M1 and M2 are iso-length
spectral if

L(M1) = L(M2).

Perhaps the best known version of the question: Does

isospectral imply isometric? is the informal formulation due to
Mark Kac(1966), which is:

”Can you hear the shape of a drum?”
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Connections between E(M) and L(M):

In general information about E(M) does not provide
information about L(M). However in ”many settings” some

information can be recovered.

If M = X/� is a closed locally symmetric space of non-positive
curvature then E(M) determines
L(M) = the set of lengths of closed geodesics in M without
multiplicities; e.g. for closed hyperbolic manifolds Hn/�.

This connection is via The Trace Formula.

In the case when M = H
2/� is a closed hyperbolic surface,

E(M) completely determines L(M) and vice-versa (Huber,
1959).

In particular:
If M1 and M2 are closed hyperbolic surfaces, then M1 and M2

are isospectral if and only they are iso-length spectral.
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Constructions of isospectral but non-isometric locally
symmetric spaces were given by:

Vignéras (1983) Isospectral non-isometric hyperbolic surfaces
and hyperbolic 3-manifolds.(uses arithmetic of quaternion
algebras)

Sunada (1985) Gives a general construction to establish
isospectral manifolds which can often be proved to be
non-isometric. e.g.
If G is a non-compact simple Lie group with associated

symmetric space X, then there exist closed, isospectral,

non-isometric manifolds with universal cover X.

Spatzier (1989), McReynolds (2014).

Sunada’s method is motivated from a construction in Number
Theory.Arithmetically equivalent number fields

The methods of both Vignéras and Sunada also produce
iso-length spectral manifolds.
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Vignéras (1983) Isospectral non-isometric hyperbolic surfaces
and hyperbolic 3-manifolds.(uses arithmetic of quaternion
algebras)

Sunada (1985) Gives a general construction to establish
isospectral manifolds which can often be proved to be
non-isometric.

e.g.
If G is a non-compact simple Lie group with associated

symmetric space X, then there exist closed, isospectral,

non-isometric manifolds with universal cover X.

Spatzier (1989), McReynolds (2014).

Sunada’s method is motivated from a construction in Number
Theory.Arithmetically equivalent number fields
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Both Vigneras and Sunada’s method produce commensurable
manifolds.

Manifolds M and N are commensurable if they share a common
finite sheeted cover.

Lubotzky-Samuels-Vishne (2006) Construct locally symmetric
spaces from lattices in SL(n,R), SL(n,C) (n � 3) that are
isospectral but NOT commensurable.

Question 1: When does isospectrality imply commensurability?
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Commensurability and the rational length set:

QL(M) = {q.` : q 2 Q, ` 2 L(M)}

Note that if M1 and M2 are commensurable then

QL(M1) = QL(M2).

Definition
Two Riemannian manifolds M1 and M2 are length
commensurable if QL(M1) = QL(M2).
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If M1 and M2 are closed locally symmetric spaces then:

E(M1) = E(M1) ) L(M1) = L(M2) ) QL(M1) = QL(M2).

Question 2: When does length commensurable imply

commensurability?

Caution: Lubotzky-Vishne-Samuel’s result tells us not always.

Beautiful and deep work of Prasad and Rapinchuk provided a
remarkably complete picture in the setting of:

Arithmetic locally symmetric spaces attached to
absolutely simple real algebraic groups.
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In particular the following papers clarify when ”length
commensurable implies commensurable” for arithmetic locally
symmetric spaces arising from absolutely simple real algebraic
groups of all types.

G. Prasad, A.S. Rapinchuk, Weakly commensurable arithmetic

groups and isospectral locally symmetric spaces, Publ. IHES
(2009).

G. Prasad, A.S. Rapinchuk, A local-global principle for

embeddings of fields with involution into simple algebras with

involution, Comment. Math. Helv. (2010).

G.Prasad, A.S.Rapinchuk, On the fields generated by the lengths

of closed geodesics in locally symmetric spaces, Geom. Dedicata
(2013).

-

-

Tirone



The complete picture also relies on work of:

S. Garibaldi, Outer automorphisms of algebraic groups and

determining groups by their maximal tori, Michigan Math. J.
(2012).

S.Garibaldi, A.S.Rapinchuk, Weakly commensurable

S-arithmetic subgroups in almost simple algebraic groups of

types B and C, Algebra and Number Theory 7 (2013).

Note that the results in higher rank are conditional upon the
truth of Schanuel’s conjecture.
Remarks: (1) The case of arithmetic hyperbolic 2-manifold
was proved in (R, Duke 1992).

(2) The case of arithmetic hyperbolic 3-manifolds was proved in
(Chinburg, Hamilton, Long, R, Duke, 2008).
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Here is a sample theorem that follows from the previous slide.

Theorem (Sample Theorem)

Let M1 and M2 be arithmetic hyperbolic n-manifolds for n � 2.
Then

1. Suppose n is either even or = 3 (mod 4), then length

commensurability implies commensurability.(so isospectral

implies commensurable in this case)

Indeed if M1 and M2 are not commensurable, then after a

possible interchange of M1 and M2, there exists `1 2 L(M1)
such that for any `2 2 L(M2), the ratio `2/`1 is

transcendental.

2. For any n = 1 (mod 4) there exist length commensurable,

but not commensurable, arithmetic hyperbolic n-manifolds.

Open Question: Can any of the manifolds provided by (2)

of this Theorem be shown to be isospectral?
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Will give some other consequences of Prasad and Rapinchuk’s
work later, but let me talk briefly about the strategy to prove
”length commensurable implies commensurable.”

Let �1 and �2 be arithmetic groups arising from algebraic
groups G1 and G2 defined over number fields k1 and k2.

Step 1: Recover k1 and k2 from the rational length set and
show k1 = k2.

Step 2: Recover G1 and G2 from the rational length set and
show isomorphic. Can’t always
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Suppose M1 = H
2/�1 and M2 = H

2/�2 are arithmetic
hyperbolic 2-manifolds (ie �1 and �2 are torsion-free arithmetic
subgroups of SL(2,R).

The algebraic groups G1 and G2 can be viewed as the elements
of norm 1 in quaternion algebras Bi over a totally real field ki
(i = 1, 2), with conditions on Bi at the non-identity places of ki.

FACT: For i = 1, 2, ki = Q(tr(�2) : � 2 �i).

If QL(M1) = QL(M2) and `1 = 2 lnu1 2 L(M1) and
`2 = 2 lnu2 2 L(M2) are rationally related then

un1 = um2 for some m,n 2 Z.

Thus if �1 2 �1 has trace u1 + u�1
1 and �2 2 �2 has trace

u2 + u�1
2 , then:

un1+u�n
1 = um2 +u�m

2 and are algebraic integers by arithmeticity.
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FACT: k1 = Q(u2n1 + u�2n
1 ) = Q(u2m1 + u�2m

1 ) = k2.

which recovers the field which we denote by k.

To show G1
⇠= G2 we show B1

⇠= B2.

FACT: There exist (maximal) orders Oi ⇢ Bi such that �i is
commensurable with ⇢(O1

i ) for some embedding
⇢ : B ! M(2,R).

For simplicity assume �i ⇢ ⇢(O1
i ).

If � 2 �i has trace t = u+ u�1, then

1. k(u) is a quadratic extension of k.

2. k(u) ,! Bi as a quadratic subfield.

Key Point: Bi is determined up to isomorphism by the set of
those quadratic extensions of k coming from eigenvalues of
hyperbolic elements and that embed in Bi.

Hence B1
⇠= B2.
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To deal with the general case, a key notion introduced by
Prasad and Rapinchuk is

Weak Commensurability

Recall the setting of hyperbolic surfaces:
If QL(M1) = QL(M2) and `1 = 2 lnu1 2 L(M1) and
`2 = 2 lnu2 2 L(M2) are rationally related then

un1 = um2 for some m,n 2 Z.

Put another way: This condition means the subgroups
generated by the eigenvalues have nontrivial intersection.
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Definition (Weak commensurability of Prasad and
Rapinchuk)

Let G1 and G2 be semi-simple algebraic groups defined over a
field F of characteristic 0.

(a) Semi-simple elements �1 2 G1(F ) and �2 2 G2(F ) are said
to be weakly commensurable if the subgroups of F ⇤ generated
by their eigenvalues intersect nontrivially.

(b) (Zariski-dense) subgroups �1 ⇢ G1(F ) and �2 ⇢ G2(F ) are
weakly commensurable if every semi-simple element �1 2 �1 of
infinite order is weakly commensurable to some semi-simple
element �2 2 �2 of infinite order, and vice versa.

Prasad and Rapinchuk: Length Commensurable implies Weakly
Commensurable.
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Weak commensurability is the algebraic analogue of length
commensurable that Prasad and Rapinchuk formulate to reduce
”length commensurabilty implies commensurabiity” to:

When does weak commensurability imply commensurability?

(e.g in the proof of the Sample Theorem mentioned earlier and
much much more!).

Note some assumptions are needed: For example let
� < SL(2,Z) be a torsion-free subgroup of finite index, and �m

the normal subgroup generated by m-th powers of elements in
�.
Then � and �m are clearly weakly commensurable.

But for m � 3, �m has infinite index in �.
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Step 1: Weak commensurability recovers the adjoint trace-field
(which is the field of definition of the algebraic group).

Step 2: Try to recover G1 and G2 .

The fact that weak commensurability does not always imply
commensurability is often related to the failure of the analogue
of:

A quaternion algebra B over a number field k is determined up
to isomorphism by certain quadratic extensions k embedded in
B.

e.g. In the Sample Theorem (2): If n = 1 (mod 4) then there

are arithmetic hyperbolic n-manifolds that have weakly

commensurable but not commensurable fundamental groups.

e.g. Uses the fact that division algebras over number fields of
degree � 3 are not necessarily completely determined by their
local invariants.
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Prasad and Rapinchuck’s work on weak commensurability leads
to, and also depends on, problems that can be described
roughly as characterizing absolutely almost simple algebraic
groups over a number field k having the same isomorphism
classes of maximal k-tori.

This in turn is closely related to the classical problem in algebra
of identifying division algebras by their maximal subfields.
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Some other highlights from Prasad and
Rapinchuk’s work on weak commensurability:

Let G1 and G2 be connected absolutely simple real algebraic
groups over a field F of characteristic 0.

1. If �1 is an arithmetic subgroup of G1(F ) which is weakly
commensurable to a lattice �2 ⇢ G2(F ), then �2 is arithmetic.

2. The set of arithmetic subgroups of G2(F ) which are weakly
commensurable to an arithmetic subgroup of G1(F ) is a union
of finitely many commensurability classes.

3. If �1 is arithmetic subgroup of G1(F ) which is weakly
commensurable to a non-uniform arithmetic subgroup
�2 ⇢ G2(F ), then �1 is non-uniform.

Open question: If �1 is a finitely generated Zariski dense

discrete subgroup of G1(F ) which is weakly commensurable to a

finitely generated Zariski dense subgroup of G2(F ). Is �2

discrete?
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Other spectra from totally geodesic submanifolds

Definition
Let M be a Riemannian manifold.
Define the weak totally geodesic spectrum TG(M) of M to be
the set of
Isometry classes of non-flat finite volume totally geodesic

submanifolds of M .

analogue of the length set
Define the totally geodesic commensurability spectrum
QTG(M) to be the set of
Commensurability classes of non-flat finite volume totally

geodesic submanifolds of M .

analogue of the rational length set
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Some results:

(McReynolds-R) Let M1 and M2 be arithmetic hyperbolic
3-manifolds.
If TG(M1) = TG(M2) then either this set is empty (typical
case) or M1 and M2 are commensurable.

(J. Meyer) Let M1 and M2 be even dimensional arithmetic
hyperbolic manifolds of dimension � 4.
If QTG(M1) = QTG(M2) then M1 and M2 are commensurable.

Caution: Recent work of Bader-Fisher-Miller-Stover implies
these more general totally geodesic spectra only make sense (ie
if non-empty are infinite) in the arithmetic setting!
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