Numerical Study of Subsonic Twin Round Jets using LES based on Explicit Filtering

Taye Melaku

Supervisor: Prof. Joseph Mathew

Indian Institute of Science
Department of Aerospace Engineering Laboratory for Turbulence Computations

January 19, 2020

Introduction Twin Jets

- the jets interact and merge into a single jet downstream
- have different jet plume development and noise directivity characterstics compared with single jet

Figure 1: Schematic and an image ${ }^{1}$ of the flow of twin round jets

Governing Equations

The Navier-Stokes are the model equations of the flow,

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+\frac{\partial\left(\rho u_{i}\right)}{\partial x_{i}}=0 \\
\frac{\partial\left(\rho u_{i}\right)}{\partial t}+\frac{\partial\left(\rho u_{i} u_{j}\right)}{\partial x_{j}}=-\frac{\partial p}{\partial x_{i}}+\frac{\partial \tau_{i j}}{\partial x_{j}} \\
\frac{\partial(\rho E)}{\partial t}+\frac{\partial\left[(\rho E+p) u_{i}\right]}{\partial x_{i}}=\frac{\partial\left(u_{j} \tau_{i j}\right)}{\partial x_{i}}+\frac{\partial q_{i}}{\partial x_{i}}
\end{gathered}
$$

where $E=p /(\gamma-1)+\frac{1}{2} \rho\left(u^{2}+v^{2}+w^{2}\right)$

Numerical Scheme

The LES with explicit filtering, Mathew et al. ${ }^{2}$ as its subgrid model implemented here, requires

- high resolution spatial discretization schemes
- high resolution low-pass spatial filter
- filtering is done at every time step

Figure 2: Compact schemes wavenumber resolution capabilities

[^0]
Code Validation - Single Round Jet

An isothermal turbulent round jet at $R e=11000$ and Mach number 0.9 and $d=0.061 \mathrm{~m}$

- computation domain is $16 d \times 75 d \times 16 d$
- with $363 \times 471 \times 363 \approx 62$ million grid points
- statistics collected after 30 flow-throughs

Experimental data ${ }^{3}$
Figure 3: Inverse centerline velocity and turbulence intensities

[^1]
Simulation of Twin Circular Jets

- jet diameter $d=0.07 \mathrm{~m}, \operatorname{Re}=2.3 \times 10^{5}$
- nozzle spacing $S / d=5$
- same initial condition for velocity at the inflow plane

$$
\frac{u(r)}{U_{j}}=\frac{1}{2}+\frac{1}{2} \tanh \left(\frac{r_{0}-r}{2 \delta_{\theta}}\right)
$$

- size computation domain is $21 d \times 54 d \times 21 d$
- with $441 \times 401 \times 441 \approx 80$ million grid points
- additional points inside the buffer zone

Velocity Flow Field

- iso-surfaces of a snapshot of Q indicating the development of the interaction
- mean velocity contour plots showing the merging of the two inner shear layers

Figure 5: Iso-surfaces of a snapshot of Q and mean velocity contour plot at mid-plane $z=0$

Mean Velocity Profiles

Initially the velocity in the center of the $x y$ - plane is zero but at downstream distance $y / d=10$ it appears in the centerline.

Figure 6: Mean velocity profiles normalized by local maximum velocity

Experimental data ${ }^{4}$

[^2]- the interaction becomes stronger when the velocity in the symmetry plane gradually increases
- The position of the maximum velocity shifts from the center of the respective jets toward the symmetry plane

Figure 7: Max mean velocity shift and decay along downstream distances

Growth of the Jet Half-Width

- almost a linear growth rate is observed for the jet spreading
- The spread of the jets computed based on the velocity ratio, $u / u_{m}=0.1$,

Figure 8: Spread of twin jet on the $x y$ - and offset $y z$-plane through the nozzle

Static pressure profiles

- The static pressure distribution increases with downstream distance
- gradual shift in position of the minimum pressure toward the mid point between the jets is observed

Figure 9: The variation of static pressure profiles at different downstream distances

Turbulence Intensity and Reynolds Shear stress

- difference in the streamwise turbulence intensity in the inner and outer shear layer regions is observed for
$y / d \geq 20$
- the peak value of the Reynolds shear stress in the inner shear layer to be smaller than the outer one at $y / d \geq 20$

Figure 10: The variation of the turbulence intensities and Reynolds shear stresses at different downstream distances

Axis Switching

At far downstream the contour profile switching was observed.

Figure 11: Iso-velocity curves of the mean velocity at different downstream cross-sections $(y / d=0,10,20,28,35$ and 48$)$

Conclusion

The current LES of twin parallel circular-nozzle jets has shown

- the shift in position of the maximum velocity and minimum pressure toward the axis of symmetry of the jets
- the flow-field spread almost in a linear fashion in the $x y$ plane
- Contour profiles at different downstream cross-section showed the presence of an axis switching
- magnitude of the streamwise turbulence intensity at the inner shear layer, for $y / d \geq 20$, are smaller compared to the outer shear layer region
- similarly the magnitude of the peak value of the Reynolds shear stress in the inner shear layer to be smaller than the outer one at $y / d \geq 20$

Thank You!

[^0]: ${ }^{2}$ Joseph Mathew et al. "An explicit filtering method for large eddy simulation of compressible flows". In: Physics of Fluids 15 (8 2003).

[^1]: ${ }^{3}$ Panchapakesan N. R. and Lumley J. L. "Turbulence measurements in axisymmetric jets of air and helium. Part 1 Air jet". In: J. Fluid Mechanics 246.197 (1993).

[^2]: ${ }^{4} \mathrm{~T}$. Okamoto et al. "Interaction of twin turbulent circular jet". In: Bulletine of JSME 28.238 (1985).

