The Role of Centerbody Wake on the Precessing Vortex Core Dynamics of a Swirl Nozzle

Arnab Mukherjee, Nishanth Muthichur, Chaitali More, Saarthak Gupta and Santosh Hemchandra

> Department of Aerospace Engineering Indian Institute of Science, Bangalore

> > Combustion Physics Lab, IISc

Overview

- Motivation
- Flow Configuration
- Theoretical and Computational work
- Results
- Conclusion

Motivation

• Combustion instability in Lean-Premixed combustors

Prog. in energy. and comb. Sci. (35) 2009, 293-364

Single nozzle swirl flow field

- Centerbody wake recirculation zone (CWRZ) downstream of the centerbody
- Strong shear layers between vortex breakdown bubble (VBB) and annular flow

Precessing vortex core (PVC)

- Neutrally stable hydrodynamic mode
- Helical vortex structure

N.Syred 2006

Weaker vortex

Vortex element

Configurations Investigated

Name	U ₀ (m/s)	$Re = U_0 D/v$	D _c	N (in million)
LES50	50	48,677	10mm	71
LES85A	85	82,751	10mm	90
LES85B	85	82,751	5mm	87

- Steady top hat axial velocity profile at inlet •
- Length scale = D, Velocity scale = U_0 (area averaged • bulk flow velocity)

Swirler Schematic

Large Eddy Simulations

- Explicit filtering LES method
- Spatial derivatives: 8th order central difference scheme
- Time advancement: 3rd order Runge-Kutta scheme.
- Overset mesh method

Schematic of LES computational domain geometry

Linear Stability : Formulation

- Linearized Navier-Stokes equations
 - q = Q + q' + q''
 - $q' = q_m(r,z)exp[i(m\theta \omega t)]$
 - $-i\omega \mathcal{B}q_m = \mathcal{L}_m(Q)q_m$
- Boundary Conditions
 - •Walls: $u_r = u_\theta = u_z = 0$
 - •Farfield: $u_r = u_{\theta} = u_z = p = 0$
 - •Centerline: $u_z = p = 0, u_r + imu_{\theta} = 0, du_r/dr = 0$
 - (ref: Batchelor, JFM 1962)
 - •Inlet: $u_r = u_{\theta} = u_z = 0$
 - •Outlet: $du_r/dz = du_\theta/dz = du_z/dz = 0$
- Finite Element discretization based on triangular elements (FreeFEM++)
 - Velocities P1bubble
 - Pressure P1

Schematic of axi-symmetric domain used for hydrodynamic stability analysis

Results - Baseflow

- Validation of LES from experimental results
- Mean azimuthal velocity peak value different
- Rms velocities location of peaks are accurately captured
- LES method flow dynamics properly captured

Combustion Physics Lab, IISc

Results - Time Series Analysis

- LES85B PSD peak, High cross coherence, zero phase (helical)
- LES85B most energetic mode – strong oscillation at 1571Hz

2000

f(Hz)

PSD at r/D = 0, z/D = 0.81

()

4000

6000

2000

SPOD (LES85B)

f(Hz)

Modal energy spectrum from

0

4000

6000

Combustion Physics Lab, IISc

Results - Linear Stability Analysis

- Zero axial velocity contour VBB and $\frac{z}{D}$ CWRZ region
- LES50 and LES85A overlapping contours
- LES85B clear demarcation not observable

Time-averaged axial velocity for LES50, LES85A and LES85B

Combustion Physics Lab, IISc

Results - Linear Stability Analysis

Case	ω	f _{LSA} (Hz)	f _{SPOD} (Hz)
LES50	3.8 + i(-0.09)	822	No Precession
LES85A	3.7 + i(-0.17)	1367	No Precession
LES85B	4.0 + i(+0.13)	1477	1571

- LES85B marginally unstable mode
- Centerline radial oscillation VBB precession

Conclusions

- LSA solver has great agreement with time series analysis. The solver is fast and takes 30 minutes at most on an average laptop to run.
- Halving D_c reduces the length of CWRZ resulting in VBB and CWRZ being separated possibly being the cause of VBB precession.
- Centerbody could effectively be used to turn on or turn off the PVC instability.