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● Non-spherical particles in a fluid are found in 
nature and technology.

Red Blood 
Cells

Fibres in pulp 
used for paper 
manufactuing

Ice crystals in clouds



  

Applications

● The rheological properties 
of a suspension of non-
spherical particles depends 
on the long-time orientation 
distribution of those 
particles.

● In microfluidic applications, 
shape-based separation of 
particles in the flow 
depends on the orientation 
distribution of particles.



  

Jeffery orbits

Increasing aspect ratio of the oblate spheroid

● In Stokes flow, spheroid rotates along one of a 
one-parameter family of Jeffery orbits, 
determined by its initial orientation.

● Drift across Jeffery orbits is caused by finite 
inertia or fluid elasticity.



  

Characterizing fluid elasticity

● Two parameters characterize fluid elasticity (at 
low De):

1. Deborah number, De

2. Ratio of normal stress-differences, N2/N1

● Normal stress-difference ratio is related to the 
second order fluid parameter, ε:

● Usually for polymer solutions, 



  



  

Our problem

● A neutrally buoyant spheroid in a 
viscoelastic simple shear flow at small 
Deborah number.

● Deborah number (De) is the ratio of fluid 
relaxation time to a flow time scale 
(inverse shear rate for simple shear flow). 

● Find the long time orientation dynamics of 
the spheroid.

● Even though De is small, the orientation 
changes will be large.

● Aspect ratio is arbitrary and -3 ≤ ε ≤ +3 in 
our study 



  

Methodology-Reciprocal theorem

● Torque, or angular velocity, is found using the 
Lorentz reciprocal theorem.

● Reciprocal theorem uses known Stokes 
velocity fields from two problems:

1. The actual problem of spheroid in shear flow

2. A test problem with the same flow domain 
(spheroid rotating about its transverse axis) 



  

Methodology-Reciprocal theorem

● Angular velocity is given by an integral:

Prefactor of De implies that only Stokes velocity fields are needed inside 
the integral



  

Viscoelastic stress tensor

● Stress tensor for viscoelastic fluid to first order 
in De:

corotational quadratic

Vorticity tensor Strain tensor



  

(C,τ) coordinates

● C is the Jeffery orbit 
constant.

● τ is the phase along 
Jeffery orbit.

● In Stokes flow a 
spheroid rotates 
along a fixed Jeffery 
orbit.



  

Measuring drift across Jeffery orbits

● We compute: ΔC = Change in 
C over one period of 
revolution in the Jeffery orbit.

● ΔC = 0 in Stokes flow.
● ΔC  > 0 implies drift towards 

tumbling mode.
● ΔC  < 0 implies drift towards 

spinning mode.
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Stable orbit

Unstable orbit

Zero crossing with POSITIVE slope implies UNSTABLE orbit 
Zero crossing with NEGATIVE slope implies STABLE orbit



  

ΔC/(C2+1) vs C/(C+1)

Zero 
crossings

Spinning Tumbling

Typical curves for 
ε< -0.4



  

Zero crossing values C*/(C*+1)

Spinning

Tumbling

all Stable



  

ΔC/(C2+1) vs C/(C+1)

Zero crossings
move from large
C to small C as
eccentricity increases

Spinning Tumbling

Typical curves for 
-0.34 < ε < 0



  

Zero crossing values C*/(C*+1)

Spinning

Tumbling

all Stable



  

Behavior for ε>0

Mixture of stable and 
unstable orbits



  

Prolate spheroid – Phase diagram

Spinning mode stable

Spinning mode stable

Sphere

Tumbling mode stable

Stable precessional orbits Mixture of stable and 
unstable modes



  

Oblate spheroid – Phase diagram
(ongoing)

Sphere

Spinning mode stableTumbling mode stable



  

Conclusions

● We have a very rich behavior of orientation 
dynamics depending on the fluid rheology and 
spheroid geometry, as captured by the phase 
diagram.

● Earlier experimental studies of prolate 
spheroidal particles in parallel plate flow cell in 
a Boger fluid with ε≈-0.5, De=10-2-1 (Gunes etal 
2008;Johnson etal 1990) are in qualitative 
agreement with our results.

Gunes etal (2008) J. Non-Newtonian Fluid Mech. Vol 155, pp. 39-50
Johnson etal (1990) J. Non-Newtonian Fluid Mech. Vol 34, pp. 89-121



  

Future work

● Orientation dynamics of oblate spheroid in 
viscoelastic shear flow.

● Spheroids in non-linear flows, with applications 
to shape-sorting of particles in microfluidics.

● Combined effect of gravity and shear on the 
orientation dynamics of spheroids.



  

Thank You
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