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What kinds of fluids do we talk about in Astrophysics?

-~

Dark matter : forms the
underlying structures in the
Universe - collisionless, non-
relativistic fluid, interacts
gravitationally

Gas: falls into dark matter
potential wells & radiatively
emits
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The radiative cooling of hot gas and condensation
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Multiphase gas : Cant be only hot gas!

Bulk of this hot gas often remains hot!

tcool 5 tHubble

No evidence of monolithic cooling
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T<10* K

Direct
cold gas
infall

Choudhury+ 2020 [in prep]
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Multiphase gas : what are the sources of cold gas?
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Where are the cold filaments? What we look for in simulations/
ohservations
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Choudhury+2019

The condensation curve
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ROLE OF ENTROPY (INDEX) IN CONDENSATION
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Typical ICM Extended core No core

20 30 40

x( kpc)
e — |
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Choudhury+2019 (Voit+ first discuss the effect of entropy profiles)




VARIATION OF METALLICITY AND GASEOUS SYSTEM SIZE
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ROLE OF METALLICITY IN LOCAL THERMAL INSTABILITY
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Growth rate vs. T
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SUMMARY

CGM/ICM - a complex astrophysical gas
e HD/MHD

e unlike terrestrial fluid - gravity (dynamics of DM)
e Radiates - observable!

Gas in multi-phase - multiple proposed scenarios for
condensation

e direct cold gas infall

e local condensation (thermal instability)
e mergers

Local thermal instability - conditions and constraints - observables
e Cooling time to free-fall time
* Entropy

* Metallicity



