# The explicit filtering method for large eddy simulations of a turbulent premixed flame

Anindya Datta Joseph Mathew Santosh Hemchandra

Department of Aerospace Engineering Indian Institute of Science, Bangalore

January 20, 2020

- Combustors operate in *lean premixed regime* to minimize pollutant emissions.
  - High *Re* flows, large range of energetic flow scales
  - Thin reaction zone (TRZ)
- Large Eddy Simulations of complex turbulent reacting flows
  - Capture dynamics of large flow structures and their interactions with flames
- Explicit filtering approach of LES (EFLES) is based on approximate deconvolution modelling (ADM).
  - Mathew et. al, *Phys. Fluids* 15 (8) (2003).
  - Applied successfully to non-reacting flow computations

• Governing Eq. for fully compressible, multi-component reacting flow in conservative form,

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}_i(\mathbf{U})}{\partial x_i} = \frac{\partial \mathbf{F}_{v,i}(\mathbf{U})}{\partial x_i} + \mathbf{S}(\mathbf{U}), \qquad (1)$$
$$\mathbf{U} = [\rho \ \rho u \ \rho v \ \rho w \ \rho e \ \rho Y_1 \dots \rho Y_N]^T, \ \mathbf{S} = [0 \ 0 \ 0 \ 0 \ 0 \ \dot{\omega}_1 \dots \dot{\omega}_N]^T.$$

• Eq. for LES field, 
$$\overline{\mathbf{U}} = G * \mathbf{U}$$
,

$$\frac{\partial \overline{\mathbf{U}}}{\partial t} + \frac{\partial \mathbf{F}_i(\overline{\mathbf{U}})}{\partial x_i} = \frac{\partial \mathbf{F}_{v,i}(\overline{\mathbf{U}})}{\partial x_i} + \mathbf{S}(\overline{\mathbf{U}}) + \underbrace{\mathcal{R}(\mathbf{U},\overline{\mathbf{U}}) + \mathcal{R}_S(\mathbf{U},\overline{\mathbf{U}})}_{remainder \ terms}.$$

• G - low pass spatial filter.

#### Formulation

• ADM uses  $\mathbf{U} \approx \mathbf{U}^* = Q * \overline{\mathbf{U}}$  to get,  $[Q \approx G^{-1}]$ 

$$\frac{\partial \overline{\mathbf{U}}}{\partial t} = G * \left\{ -\frac{\partial \mathbf{F}_i(\mathbf{U}^*)}{\partial x_i} + \frac{\partial \mathbf{F}_{v,i}(\mathbf{U}^*)}{\partial x_i} + \mathbf{S}(\mathbf{U}^*) \right\} = G * \mathscr{L}(\mathbf{U}^*),$$

- Stolz, Adams, Phys. Fluids 11 (7) (1999).
- Numerical solution of ADM Eq., with timestep  $\Delta t$ ;

**O** Deconvolution: 
$$\mathbf{U}^{*(n)} = Q * \overline{\mathbf{U}}^{(n)}$$
**O** Numerical Integration:
$$\overline{\mathbf{U}}^{(n+1)} = \overline{\mathbf{U}}^{(n)} + \Delta t [G * \mathscr{L}(\mathbf{U}^{*(n)})]$$

$$= \sum \overline{\mathbf{U}}^{(n+1)} = G * [\mathbf{U}^{*(n)} + \Delta t \mathscr{L}(\mathbf{U}^{*(n)})] + \underbrace{[\overline{\mathbf{U}}^{(n)} - G * \mathbf{U}^{*(n)}]}_{neglect [::G*\mathbf{U}^* \approx G*\mathbf{U}]}$$

# Formulation

#### 3 stage ADM procedure

- 1. Deconvolution:  $\mathbf{U}^{*(n)} = Q * \overline{\mathbf{U}}^{(n)}$
- 2. Numerical Integration:  $\mathbf{U}^{*(n)} \to \mathbf{U}^{*(n+1)}$
- 3. Filtering:  $\overline{\mathbf{U}}^{(n+1)} = G * \mathbf{U}^{*(n+1)}$

1. Deconvolution: 
$$\mathbf{U}^{*(n+1)} = Q * \overline{\mathbf{U}}^{(n+1)}$$

Combine to an explicit filtering step 
$$E = Q * G$$

#### Explicit Filtering LES

- Numerical Integration: U<sup>\*(n)</sup> → U<sup>\*(n+1)</sup>, (using Eq. (1) in terms of U<sup>\*</sup>)
- **2** Filtering: Update  $\mathbf{U}^{*(n+1)}$  with filtered field  $E * \mathbf{U}^{*(n+1)}$ 
  - Mathew et. al, *Phys. Fluids* 15 (8) (2003).

- $E \approx I$  over a range of large computed scales.
- E falls off to zero over a small range of the highest represented wavenumbers.
- As the represented spectral range is increased, EFLES ensures monotonic convergence to DNS.



Response Functions Mathew, arXiv (2016)

- Discretization
  - 8<sup>th</sup> order central difference spatial discretization
  - 3<sup>rd</sup> order R-K time marching
- Explicit Filtering
  - 10<sup>th</sup> order spatial filter
- 13 species reduced chemical mechanism
  - Sankaran et. al, *Proc. Combust. Inst.* 31 (1) (2007)
- Navier-Stokes Characteristic Boundary Conditions (NSCBC)
  - Poinsot, Lele, J. Comp. Phys. 101 (1) (1992)



Variation of  $s_L$  with  $\phi$  for CH<sub>4</sub>-air premixed flames ( $T_u$ = 800 K,  $p_0 = 1$  atm).

# Filter Adaptation

• Steep species gradients are detected using the sensor,

$$F_s = \left[\frac{\delta_F}{|Y_{CH_4,u} - Y_{CH_4,b}|} |\nabla Y_{CH_4}|\right] H\left(5.0 - \frac{\delta_F}{\Delta_{local}}\right).$$

- Progressively reduce filter order to 6 where  $F_s \ge 0.5$ .
- Adaption is performed along a mesh direction *i* when

$$\frac{\hat{x}_i \cdot \nabla Y_{CH_4}}{|\nabla Y_{CH_4}|} > \frac{1}{\sqrt{3}}.$$

• Patel, Mathew, *Fluids* 4 (3) (2019).



# Computational Domain

Turbulent premixed CH<sub>4</sub>-air round jet flame

•  $\phi = 0.8, T_u = 800 \text{ K}$ 

Laminar flame properties (from Cantera)

• 
$$s_L = 2.05 \text{ ms}^{-1}, T_b = 2313.65 \text{ K}$$
  
•  $\delta_F = 300 \ \mu\text{m}, \delta_H = 120 \ \mu\text{m}$ 

#### Nominal mesh parameters

|       | Δ         | $\delta_F/\Delta$ | $\delta_H/\Delta$ | Points      |
|-------|-----------|-------------------|-------------------|-------------|
|       | $(\mu m)$ |                   |                   | $(x10^{6})$ |
| DNS   | 30        | 10.0              | 4.0               | 29.2        |
| LES4x | 120       | 2.5               | 1.0               | 1.1         |
| LES6x | 180       | 1.7               | 0.7               | 0.5         |



#### ■ Top hat mean axial velocity profile

- $U_c = 65 \text{ ms}^{-1}$
- $Re = U_c D/\nu = 1500$

#### Inflow turbulence

- Divergence free synthetic velocity fluctuations
  - ▶ Von Karman-Pao energy spectrum
- Isotropic turbulence boxes are blended to generate a long dataset.
  - ▶ Larsson, J. Comp. Phys. 228 (2009)
- Turbulent fluctuations are advected using Taylor's hypothesis

- PSD at low frequencies  $(fD/U_c \le 1)$  are the same.
- Filter removes high wavenumber content in two LES cases.
- Monotonic convergence to DNS result is evident.
- Lack of wide intertial range due to low value of *Re*.



Normalised PSD on centerline at  $z/D = 1.0 \label{eq:scalar}$ 

11/19

## Time averaged flow statistics



Time averaged statistics of streamwise velocity.

## Time averaged flow statistics



Time averaged statistics of radial velocity.

## Instantaneous Snapshots



Typical instantaneous snapshots of temperature  $(t \approx 4.0t_{FL})$  with the contour of Heat Release Rate,  $\dot{q} = 5.0 \times 10^9 \text{ Js}^{-1}$ .

## Mean Progress Variable Contours

- Small reduction in mean flame height in EFLES cases.
- LES results show thicker flame brush.



Contours of time averaged progress variable,  $\langle c \rangle = \langle Y_{CO_2} \rangle / Y_{CO_2,b}$ .

## Time averaged statistics



Time averaged statistics of temperature.

## Time averaged statistics



Time averaged statistics of  $CH_4$  and OH mass fraction.

### Time averaged statistics



Time averaged statistics of CO mass fraction.

Anindya Datta (IISc)

EFLES for premixed flame

January 20, 2020

- First application of EFLES approach to a simple realistic premixed jet flame configuration.
- LES results for velocity, temperature and major species show good qualitative and quantitative agreement.
- LES predicts a slightly shorter flame height and a moderately thicker flame brush.
- Use of QSS assumptions in present mechanism may lead to large deviations in CO prediction by EFLES computations.
- EFLES is a promising approach for LES of turbulent reacting flow as well.
- At high *Re* flows or when flame length scale is thinner than grid resolution , additional SGS model is needed for reaction rate terms (Ongoing work).