On late stage mechanisms of transition in round jets

Naveen Balakrishna

Joseph Mathew
Arnab Samanta

Department of Aerospace Engineering
Indian Institute of Science

January 20, 2020

Stages of instability and transition in round jets

Different stages of instability in round jet at Reynolds number of 13,000 Photograph by R. Wille and A.
Michalke, courtesy of H.Fiedler*

1. Shear layer undergoes Kelvin-Helmholtz-like instability \rightarrow rolls up into vortex rings
2. Linear instability of vortex rings (azimuthal) ${ }^{\dagger}$
3. Non-linear effects creep in \rightarrow transition to turbulent flow
[^0]Linear global stability of vortex ring with $\sigma / R=0.41$ and $R e=5500^{*}$

*Balakrishna et al., J. Fluid Mech. - under review

Transition of vortex ring

Linear stability, $\mathrm{n}=6 \quad$ Linear stability, $\mathrm{n}=5-7$
DNS, $n=1-24$

Transition of vortex ring

Linear stability, $\mathrm{n}=6 \quad$ Linear stability, $\mathrm{n}=5-7$
DNS, $n=1-24$

Motivation for the present study

■ Number of halo and hairpin-like vortices is a function of dominant azimuthal mode, n

- Any hairpin vortex in the wake is in the induced velocity field of ring and other hairpin vortices
- Transition is modelled with simplified models of increasing complexity

1. Isolated hairpin vortex
2. Isolated hairpin vortex in a uniform shear flow
3. Multiple hairpin vortices
4. Multiple hairpin vortices with a vortex ring

Evolution of an isolated hairpin vortex - previous studies

■ Evolution of an isolated parabolic vortex filament was studied using

- Local-induction approximation*
- Biot-Savart line integral ${ }^{\dagger}$

■ Evolution has the following stages

- Lift-up of the hairpin tip due to self-induced velocity
- Increase in radius of curvature at the tip
- Legs of hairpin comes close to each other upstream of the tip leading to pinch-off
■ Presence of uniform shear retards pinch-off

[^1]
Parameters for the present simulation

- Hairpin vortex modelled as semi-ellipse
- Elliptic cylindrical coordinates
- Gaussian vorticity distribution

■ Initial velocity field obtained from vorticity field

- Length and time scales are b and b^{2} / Γ
- $R e=1500, \sigma=0.2$ and $\mathrm{AR}=20$
- $L_{x} \times L_{y} \times L_{z}=30 \times 20 \times 10$

■ $N_{x} \times N_{y} \times N_{z}=769 \times 513 \times 256$

- Boundary conditions
- Free slip wall and periodic in y and z
- At $x=L_{x}$ convective boundary condition
- At $x=0, u=0.02 y+0.1$
- Incompact3D*
* Laizet and Li, Int. J. Numer. Methods Fluids (2011)

Evolution of an isolated hairpin vortex

Without shear

With uniform shear

Pyramid-reconnection process

Before reconnection

After reconnection
Solid blue - initial and surviving vortex
Dotted red - reconnected vortex
Dark and light arrows - vorticity and propagation direction*

[^2]
Different stages of reconnection

Different stages of reconnection

,

$00=\begin{aligned} & -3.3 \\ & -0.4\end{aligned} 3^{4}$

Summary and ongoing work

- Summary
- Evolution of an isolated hairpin vortex is similar to the works of Moin et al. (1986) till pinch-off
- Legs of hairpin undergoes pyramid-reconnection process at pinch-off leading to formation of vortex ring and smaller hairpin
- Three stages of vortex reconnection formulated by Melander \& Hussian (1988) are shown
■ Ongoing work
- Evolution of multiple hairpins distributed along the circumference of the ring is being studied with and without ring.
- Significance of reconnection process during the breakdown of halo vortices

Thank you!

[^0]: *Van Dyke M., An Album of Fluid Motion (The Parabolic Press, Stanford, 1982)
 ${ }^{\dagger}$ Balakrishna et al., J. Fluid Mech. - under review

[^1]: *Hama, Phys. Fluids (1962)
 \dagger^{\dagger} Moin et al., Phys. Fluids (1986)

[^2]: * Moffatt \& Kimura, J. Fluid Mech. (2019)

