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Motivation
To suggest a suitable approach to study instability of decaying flows in a duct

Type of flow

Transient flows
No further supply of energy
Bounded flows

Flow characteristics

Reverse flow region
Adverse pressure gradient
High shear stress

Development of flow

Redistribution of energy viscous diffusion
Decay of energy viscous dissipation
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Motivation
Applications of decaying flows in a duct

Sudden blockage in internal flow systems

Application specific requirement or sudden blockage
Hydraulic devices and other physiological flows
Substantial change in velocity, pressure and shear stress

Examples

Valve operation in hydraulic systems, chemical and natural gas
pipelines
Blood flow in arteries and flow in respiratory system
Dynamic stall behavior: dynamics of the reverse flow regions
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Linear Stability Approaches

To Compare

1 Quasi-steady normal mode analysis

2 Farrell’s approach applied in quasi-steady sense

3 Optimal growth analysis considers base flow decay

Based on

Perturbation energy growth

Radial Distribution of each mode

Conformity with experiment
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Experimental Investigation of a Transient Flow

Set-up

a steady fully developed duct flow imposed with sudden blockage

an unsteady equivalent of the steady problem

a trapezoidal flow rate is maintained
the deceleration phase of the flow and the gradual flow development
due to viscous dissipation: emulate the phenomena of impulsively
blocked flow

Objective

PIV measurement provides the velocity field data

approximated with the analytical velocity profiles

Observation of the vorticity field
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Experimental Investigation of a Transient Flow

Analysis

Spatial dynamic mode decomposition

applied to the vorticity field at a time instance

temporal dynamic mode decomposition

velocity fields of the whole spatial domain as a single data
its dynamic evolution: the temporal sequence of the data fields
starting from the
piston stoppage time to a time of interest
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Suddenly Blocked Channel Flow

Figure: Sketch of Channel flow with
initial profile before application of the valve.
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Figure: Streamlines near the end wall
after the passage of the pressure wave.

∂ω

∂t
=M[∇×u×ω+ 1

Re
∇

2
ω] , M=U/c.

For M ≪ 1 and M/Re ≪ 1: ∂ω/∂t = 0.

Following the passage of pressure wave (small timescale of h/c), the
vorticity is essentially frozen.

Velocity distribution just immediately after the passage of the pressure
wave satisfies

∇×u=ω(0−) with u(x=0)=0 and v(y=±1)=0 . (1)
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Base Flow-1-0.5 0 0.5 1-5 -4 -3 -2 -1  0 -0.15-0.1-0.05 0 0.05 0.1 0.15
Figure: Streamlines near the end wall after
the passage of the pressure wave.
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Figure: Development of the base velocity
profile after the passage of pressure wave.

The vorticity layer diffuses with a short diffusion time scale of δ2/nu.

The velocity profile is given by: U(y , τ ) =
∑

∞

n=1
2
v2n

[

1− cos yvn
cos vn

]

e−v2n τ ,

where τ = t/Re and tan vn = vn.
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Impulsively Blocked Channel Flow
Base Flow Characteristics
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(a) base velocity profile
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Figure: Variation of the base flow parameters.
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Impulsively Blocked Channel Flow
Base Flow Characteristics
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Figure: Variation of the base flow parameters.
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Impulsively Blocked Channel Flow
Base Flow Characteristics
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Figure: Variation of the base flow
parameters.

transient flow

initial decay is fast and mostly
exponential

later on, decays asymptotically to
stationary state

long term stability characteristics
may not be important

intermediate perturbation growth
may be exponential or algebraic
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Quasi-steady Normal Mode Analysis
Farrell’s Approach
Optimal Perturbation: Transient Base Flow

Impulsively Blocked Channel Flow
Instantaneous Neutral Curve
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(a) Instantaneous neutral curves corresponding
to various time instances.
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(b) Variation of the critical Reynolds number
with time

Figure: Results of the quasi-steady modal stability analysis.
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Quasi-steady Normal Mode Analysis
Farrell’s Approach
Optimal Perturbation: Transient Base Flow

Impulsively Blocked Channel Flow
Instantaneous Neutral Curve
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Quasi-steady analysis: instantaneous neutral curve

Instantaneous critical Reynolds number, Rec(τ )

Critical time, τ∗ = dRec/dτ

Critical Reynolds number, Re∗c ; necessary condition for instability
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Quasi-steady Normal Mode Analysis
Farrell’s Approach
Optimal Perturbation: Transient Base Flow

Farrell’s Approach
Formulation

Key Characteristics

Transient growth analysis

Variational formulation

Quasi-steady base flow

ψ(t) =

N
∑

j=1

aj φ̃je
iα(x−cj t) = [Φta] e

iαx

A variational problem is formulated with the functional ‖ψ‖2 to be
maximized, and with the constraint that the initial perturbation has a
unit norm, i.e., ‖ψ(0)‖2 = 1.
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Quasi-steady Normal Mode Analysis
Farrell’s Approach
Optimal Perturbation: Transient Base Flow

Farrell’s Approach
Formulation

Functional of the form: F = a∗Bta+ λ(a∗B0a − 1)

where Bt = Φ
∗
tW (α2 − D2)Φt

Setting the first variation of the functional F with respect to a to zero
leads to an eigenproblem

Bta+ λB0a = 0

with eigenvalue λ = λE defining the growth potential and the
corresponding eigenvector as the spectral projection of the optimal
perturbation (Farrell, 1988). ∗

∗Farrell, B. F. (1988). Optimal excitation of perturbations in viscous shear flow.
Physics of Fluids, 31(8):2093.
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Quasi-steady Normal Mode Analysis
Farrell’s Approach
Optimal Perturbation: Transient Base Flow

Farrell’s Approach
Eigen spectrum
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Figure: Optimal growth analysis using Farrell’s approach; Re = 150, α = 2 and ∆t = 40 with
initial time corresponding to t = 0.02.
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Quasi-steady Normal Mode Analysis
Farrell’s Approach
Optimal Perturbation: Transient Base Flow

Farrell’s Approach
Farrell’s mode
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(a) Unstable Eigenmode
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(b) Farrell’s mode

Figure: Streamline contours of the most unstable eigen mode and the optimal mode obtained
through Farrell’s approach.
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Quasi-steady Normal Mode Analysis
Farrell’s Approach
Optimal Perturbation: Transient Base Flow

Quasi-steady vs Transient Base Flow
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Figure: Energy growth of Farrell’s mode with time integration considering transient base flow
compared with the energy growth with modal assumption.
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Quasi-steady Normal Mode Analysis
Farrell’s Approach
Optimal Perturbation: Transient Base Flow

Optimal Perturbation
Formulation

The basic dynamical equations: ∂φ
∂t

= LOSφ

The functional to maximize: G(T ) = ‖φ(T )‖2

‖φ(0)‖2

With the introduction of adjoint variable φ̃, an augmented Lagrangian
can be defined as:

L(φ, φ̃) = G(φ) −

∫ T

0

(φ̃, φ̇− LOSφ)dt

To find an unconditional extremum of L which is given by the zero
variation of L w.r.t. arbitrary variation of both φ and φ̃.

∫ T

0

(φ̃, φ̇− LOSφ)dt = (φ̃, φ)|T0 −

∫ T

0

( ˙̃φ+ L†
OS φ̃, φ)dt

The corresponding adjoint equation: −∂φ̃
∂t

= L†
OS φ̃

The terminal conditions: φ̃(T ) = 2
‖φ0‖2φ(T ) and φ(0) = ‖φ0‖

4

2‖φ(T )‖2 φ̃(0)
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Quasi-steady Normal Mode Analysis
Farrell’s Approach
Optimal Perturbation: Transient Base Flow

Optimal Perturbation
Formulation

Perturbation equation: ∂φ
∂t

= LOSφ with φ(±1) = Dφ(±1) = 0.

Orr-Sommerfeld operator:

LOS ≡
iα

(D2 − α2)

[

(iαRe)−1(D2 − α2)2 − U(D2 − α2) + D2U
]

The corresponding adjoint equation with the adjoint variable φ̃ takes the
form

−
∂φ̃

∂t
= L†

OS φ̃

where

L†
OS ≡

iα

(D2 − α2)

[

(iαRe)−1(D2 − α2)2 + U(D2 − α2) + 2(DU)U
]

The terminal conditions: φ̃(T ) = 2
‖φ0‖2φ(T ) and φ(0) = ‖φ0‖

4

2‖φ(T )‖2 φ̃(0)
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Quasi-steady Normal Mode Analysis
Farrell’s Approach
Optimal Perturbation: Transient Base Flow

Optimal Perturbation
Streamline Contour and Energy Growth
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(a) Streamline Contour of the optimal
mode obtained from adjoint analysis
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(b) Energy growth of the optimal mode
with time integration

Figure: Optimal perturbation obtained by variational approach considering time dependency of
base flow.
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Quasi-steady Normal Mode Analysis
Farrell’s Approach
Optimal Perturbation: Transient Base Flow

Optimal Energy growth at vairous Re
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Figure: Energy growth of the optimal mode for various Reynolds numbers.
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Experimental Setup

Figure: Schematic of the experimental setup.
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Dye visualization

Figure: Dye visualization of an unsteady flow (Case 1c of Das (1998)).
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Quasi-steady Results
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(a) Instantaneous growth rate of the most
unstable mode at various time instances.
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Figure: Quasi-steady results of the case with trapezoidal flow rate.
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Optimal mode and its growth
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Figure: Optimal mode at the critical time and its growth for the trapezoidal case
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A comprehensive theoretical study is carried out on the instability of
a fully developed channel flow, which is blocked suddenly.

Critical Reynolds number : growth rate near the neutral curve is very
low. But, it provides guidelines for choosing the parameters for
further analysis.

Farrell’s analysis:

symmetric modes contribute to the optimal growth
most of the energy of the optimal disturbance is concentrated near
the critical layer.

optimal perturbation with an initial-value problem formulation

optimal perturbation shows similarity with the Farrell’s mode

A special experimental case of a piston driven channel flow:

The wave number of the instability wave observed in the flow
visualization, matches well with the theoretical value corresponding
to maximum instantaneous growth rate.
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Thus, it can be concluded that for suddenly blocked channel flow,
one can use Farrell’s approach with quasi-steady assumption to
obtain the optimal initial perturbation while analyzing it as an
initial-value problem.

Farrell’s approach has the advantage of its simplicity whereas the
variational approach with base flow change is more elaborate and
precise.

However, the existence of instability in the flow cannot be ensured by
quasi-steady assumption, and one needs to verify the time integrated
perturbation growth to determine the presence of instability.
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Future Prospect
Transient Pipe Poiseuille Flow
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Thank You

Thank You For Your Attention!!!
Any Questions?

∗Avinash Nayak, Debopam Das. (2017) Transient growth of optimal perturbation in a
decaying channel flow. Physics of Fluids 29, 064104.

∗Avinash Nayak, Debopam Das. (2019) A pseudospectral approach applicable for time
integration of linearized NS operator that removes pole singularity and physically spurious
eigenmodes. International Journal for Numerical Methods in Fluids 91, 473-486.
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