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What are topological
phases?

* Topological phases are characterised by quantised
physical quantities, e.g., charge polarisation (defined by
winding numbers), Hall conductance (defined by Chern
numbers), etc

* Typically, topologically non-trivial phases have edge
states - the bands touch each other at some points in the
Brillouin zone, whereas trivial phases are gapped



Classification of phases

* Phases classified by symmetry, dimension, etc

* For non-interacting fermions in presence of internal
symmetries, periodic table has been found

* Further extensions in the presence of crystalline
symmetries, extension of K-theory classification



Topological phase
transitions

* Can go between phases in different topological classes
only when a gap closes somewhere in the Brillouin zone
i.e. change in the number of edge states

* Change parameters of the theory for topological phase
transitions - e.g., as a function of the magnetic field in
the quantum Hall effect

* As parameters are tuned, bulk gap closes and reopens
signalling phase transition



Motivation

* To understand topological phase transitions using ideas
familiar from Landau theory of phase transitions, even
though there is no order parameter

* Topological phase transitions implies discrete changes
in an integer topological invariant - it signals gap closing
in single particle or many-body spectrum

* Can we classify phase transitions by scaling behaviour of
appropriate correlation functions near the transition?



Introduction to curvature
function renormalisation group

W. Chen, M. Sigrist, A. P. Schnyder, R. Chitra, P.Molignini (2016-

* First define an appropriate curvature function F'(k, M)

* Function in the space of the Brillouin zone and M
which is the set of all the tuning parameters in the
Hamiltonian

* Integral of I over the Brillouin zone gives topological
invariant



Examples
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* In 1D, winding number is given by w = 7{ A(k)
¥ 2D system with broken time-reversal symmetry;
quantum Hall system

2
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* Time-reversal invariant topological insulators

1
V= — d log Pf(k, M) mod 2
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* Point is that there is some function F'(k, M) containing

global geometric information about the band structure
which is integrated over the Brillouin zone

* Idea is that close to the phase transition, as M — M,
the curvature function diverges at the gap closing

momentum kg denoting a critical point where the
topological invariant changes

* Tuning parameter M can be magnetic field, chemical
potential, hopping parameters in the Hamiltonion, etc



Idea of the renormalisation

oroup approach

* Scaling procedure renormalises the curvature function keeping
the topological quantum number invariant

* Analogy of messy string - integrate to find number of knots or
stretch it out until knots become obvious
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Figure: W. Chen, M. Sigrist, Advanced Topological Insulators, 239-280



Scaling mechanism and
flow equation

* Idea is that as M — M._, the curvature function
develops a divergence at some high symmetry points
(HSP) where the gap closing takes place and then the

curvature function changes sign

* Will consider gap closing at non-HSP later



Peak divergence scenario

* Function gradually peaks as function of k, as we
approach M, and changes sign at the phase transition

F(k,M) A 1D as function of
. Y — single parameter M
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Flow equations

* Essential idea, change _
parameters in the theory and 18] ¢ st
reduce divergence - repeat - - Flko)
flow stops at some point

F(ko, M) = F(ko + 6k, M)



* Close to the TPT,
llmM%MjF(kQ,M) — —limM%M;F(kQ,M)

* At the fixed point

F'(ko + 0k, Mo) = F(ko, Mo)




* Same equation can be written as a differential equation -
the RG equation in parameter space

-~
d_M = 18]3(F(k7M)|k:kO dl = dk
dl 2 Oy F(ko, M)

dM
Critical point : s 50,
dl
dM
Fixed point : = C 0.




Ring divergence scenario

* Function has a ring shape whose radius reduces and
magnitude increases as M — M.
Ring-

divergence
scenario

10 shell-
divergence

scenario W




* In this case, the divergence has a ring shape, whose
radius reduces and magnitude increases as M — M,

* Extremum of ring changes sign across M,

* Turns out to be an unstable fixed point dM /dl = 0
solution of the RG equation

* So points where dM/dl diverges and unstable fixed
points denote topological phase transitions(TPT)



Length scales and critical
exponents

* Curvature function in the vicinity of a high symmetry
point (HSP) typically has Lorentzian form

F(ko, M)
1 2 512

1+ ¢&j ok

* Divergence of the curvature function at quantum
critical point introduces exponents 7>V

B M= M-—_M|" & =|M—_M]

F(ko + 0k, M) =




* Conservation of the topological invariant implies

F(kqg, M)
gD

C:/deF(k,M)oc

* yields scaling law v = v



Correlation function

characterising the '1PT

* Can introduce a correlation function that decays with
correlation length &

: 1 -
* In terms of Wannier state |R,n >= 5 y et
7

* Fourier transform of curvature function denotes
overlap of Wannier functions a distance R apart

= /dkeikRF(k,M) — Z < R,nlr|l0,n >



* Ag - is precisely the topological invariant
¥ AR- is expected to be related to the correlation length §

* So close to the TPT, Wannier functions become
extended and have overlaps over large regions



* To obtain RG flow; we require knowledge of the
curvature function only at a few points

* "To get topological invariant, need to integrate over the

whole BZ, so need to know the curvature function over
the whole BZ

* So if we can get the topological phase transitions from
the RG equations, could be much more efhicient



Simple example - Su-

Schrietter- Heeger model

* CRG procedure sufficient to obtain topological phase
diagram in a simple way

H = ) (t+6t)ch;cpi + (t — dt)cly;, cpi + hc.

1

2 M = 6t
() yhmp,
dl 4 £2
dot {2 Ot?
= (1 if ko =
dl 45t< t2> 2=

2 HSP are k=0 and = =



* In the first case, §t = 0 denotes an unstable fixed point
(critical point) and in the second case 6t = 0is divergent
and denotes a critical point

* 0t = xt - are fixed points

-t 0 t
o . . 6t

* Topological phase transition at 0t =0



* Exact solution shows that gap closes in the BZat £k ==
* Winding number=0 for §¢t >0 and1 for ¢t <O

* Here, we know that there is only one phase transition
at 6t = 0 and we need to compute the winding
number only at the fixed points 0t =t and 0t = —¢

* Easy to check that winding number at 0t = ¢ is 0 and
HEor — 1 is 1



Other examples

* Many other examples, 1D and 2D models, periodically
driven models, weakly interacting models

W. Chen Journal of Physics: Condensed Matter 28 055601 (2016).
W. Chen, M. Sigrist and A. P. Schnyder, Journal of Physics:
Condensed Matter 28, 365501 (2016).

W. Chen et. al Physical Review B 95, 075116 (2017).

W. Chen, Physical Review B 97 115130 (2018).

W. Chen, M. Sigrist, Advanced Topological Insulators, 239-280
P.Molignini, W. Chen and R. Chitra, Physical Review B98, 125129
P.Molignini, W. Chen and R. Chitra, 1906.10695

P.Molignini, R. Chitra and W. Chen, 1912.008819




Our work

* Motivation - explore this idea for more complex models

* Main results - find unstable fixed points (critical points)
where the gap closes at non HSP

* Find 2 different length scales &y and &

* Find multi-critical points where three topological phases
meet at a point



The Model

* Extended Kitaev model in one dimension

hoppings : t1,t2 pairings : A1, A2 chemical potential : g

:_tlz(ccl+1+hc)_t22(z 1CZ_|_1—|—hC)
_)\12( ,L+1+hc) )\QZ(Z 1cz+1—|—hc)

—{—gz 26 o — 1l
( ) M = {g,t1,10, A1
dcale by t) toget M ={g,t,\, 0} A=2A

Y. Niu, S. B. Chung, C.H. Hsu,I. Mandal, S. Raghu and S. Chakravarty, Phys.Rev.B85035110(2012).



Phase diagram from exact
computation of gap closings

* For fixed ¢ and As
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T'he renormalisation group

equations

d —
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Upper /lower signs for kg = 0/kg = 7



Flow diagram at HSP ko =0

RG equations derived
by setting kg = 0

Red dashed line and

part of mauve line denoting
unstable fixed point signify
critical lines with TP'T




Flow diagram at HSP ko =

RG equations derived
by setting kg = 7

Qe N T - Brown dashed line and
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E S | critical lines with TPT




Surprising Overlap with

exact solution
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Almost entire non
HSP critical line has
been obtained

Also change of winding number

of 2 across non-HSP critical line
can be predicted because of ring
divergence which implies 2 flips

of sign at TPT point



Iricritical point where three
phases meet

* Point where red dashed one and
black dash-dot line meet has three
different phases with

C=0, C=-1 and C=1

* Precisely at this point, the curvature
function is indeterminate

* Expect criticality to be different at
this point



Approach to criticality for a
critical point
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Approach to criticality for a multi
critical point (from trivial side)

4.




Approach to criticality for a multicritical
point ( from the topological side)
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Universal features

* For critical point, as expected, function diverges as you
approach the critical line and is path independent

* For the tricritical point, function does not diverge as we
approach the critical point. In fact, approaches a path
independent peak value, which can be obtained from
the equations



Computation of critical exponents

* Easy to check that F(ko = 0/7, M) diverges with the
exponent vy =1

F(ko :O/TF,M) — T

= ‘)\2()\::2 | X |g—t: 1|_1

* Also, &o/n diverges with exponent y = land v = vy as
expected

gko(M) = X 5(gata)‘7)\2)

i 1/2
2(g—t F1)2(A £ 2) ‘

=
- )\2()\i2)| - Ig_t$ 1| :



Correlation length ¢ and
Correlation function Ag

* Can compute the correlation function Ar as the Fourier
transform of the curvature function

* Model has divergences at HSP and non-HSP. However,
divergences at HSP seem to capture all the phase
transitions

* Choose to fit curvature function to Lorentzians at the
HSP ko =0 and ko = =7 and compute Ar




= / dke™ F(k, M)

BZ
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AR = / dke™ F(k, M)

— OO

_ o F(m,M)

— i £ (M) X cos(mR) X exp
| WF(O’M) X ex i
&M P  &M) ]

Ao = topological invariant
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* Can show that when M — M. close to the critical point
where the gap closes at k = 0, the envelope of the
oscillatory decay falls oft slowly and the amplitude of
the oscillations falls of quickly

* When M — M. close to the critical point where the
gap closes at £ = 7, the envelope of the oscillations
falls of quickly but the amplitude of the oscillations
continue and falls oft slowly






1o conclude

* Expect this technique to be useful to characterise
topological phase transitions in multi-dimensional
parameter spaces, particularly in interacting and
periodically driven systems - could be numerically
efficient because phase space is so large.

* Still in the exploratory phase



