# Symmetry-broken topological phases



### Tanmoy Das

Department of Physics Indian Institute of Science, Bangalore, India Arpit Raj Nepal Banerjee Diptiman Sen

A. Raj, N. Banerjee, TD (under review) Bansil, Lin, TD, RMP **88**, 021004 (2016).



### Outlook

- How robust are the topological phases with broken symmetry?
- > Robustness of quantum spin-Hall effect with **broken** time-reversal symmetry.
- > New quantization phenomena with electrical **potential**.
- > Helical anomaly, helical magnetic effect, magneto-electric coupling in 2+1D.

### Classifications of phases of matter



#### **Broken symmetry**

#### **Quantum phases**



<u>*T*</u>: Magnetism

<u>P:</u> Ferroelectricity

<u>PT</u>: Multiferroics

<u>*U*(1)</u>: Superconductivity <u>Translational:</u> Density waves



#### **Symmetry invariant**

#### **Topological phases**

| Sym | netry |   | Di             | mens           | sion           |                |
|-----|-------|---|----------------|----------------|----------------|----------------|
| Т   | С     | S | 1              | 2              | 3              | 4              |
| 0   | 0     | 0 | 0              | Z              | 0              | Z              |
| 0   | 0     | 1 | Z              | 0              | Z              | 0              |
| 1   | 0     | 0 | 0              | 0              | 0              | Z              |
| 1   | 1     | 1 | Z              | 0              | 0              | 0              |
| 0   | 1     | 0 | Z2             | Z              | 0              | 0              |
| -1  | 1     | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | Z              | 0              |
| -1  | 0     | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | Z              |
| -1  | -1    | 1 | Z              | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
| 0   | -1    | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |
| 1   | -1    | 1 | 0              | 0              | Z              | 0              |





How robust is the topological table to symmetry breaking? Surprisingly robust up to a critical coupling.Topology indicator in symmetry broken topological phases? Quantum anomalies.

**<u>This work</u>: Time-reversal broken** Z<sub>2</sub> topology and Helical anomaly.

$$\psi = (\psi_{A\uparrow} \ \psi_{A\downarrow})^T$$
 $H = \begin{cases} \xi_A & \alpha_k \\ \alpha_k^* & \xi_A \end{cases}$ 







 $\psi = (\psi_{A\uparrow} \ \psi_{A\downarrow})^T \ \psi_{B\uparrow} \ \psi_{B\downarrow})^T$  $H = \begin{cases} \xi_A & \alpha_k \\ \alpha_k^* & \xi_A \end{cases}$  $\xi_B & -\alpha_k \\ -\alpha_k^* & \xi_B \end{cases}$ 

 $\xi_A = k^2/m$  $\alpha_k = \alpha_R (k_y - ik_x)$ 





$$\psi = (\psi_{A\uparrow} \ \psi_{A\downarrow} \ \psi_{B\uparrow} \ \psi_{B\downarrow})^T \qquad \xi_A = k^2/m$$

$$H = \begin{cases} \xi_A & \alpha_k & \xi_{AB} & 0 \\ \alpha_k^* & \xi_A & 0 & \xi_{AB} \\ c.c. & \xi_B & -\alpha_k \\ -\alpha_k^* & \xi_B \end{cases} \qquad \alpha_k = \alpha_R(k_y - ik_x)$$



This principle of helicity inversion induced topological phase can be achieved intrinsically, artificially, or viainteraction in condensed matter and optical lattices.TD, Balatsky, Nat. Commun. 4, 1972 (2013).



$$\psi = (\psi_{A\uparrow} \ \psi_{A\downarrow} \ \psi_{B\uparrow} \ \psi_{B\downarrow})^T \qquad \xi_A = k^2/m$$

$$H = \begin{cases} \xi_A \ \alpha_k \ \xi_{AB} \ 0 \ \xi_{AB} \end{cases} \qquad \alpha_k = \alpha_R (k_y - ik_x)$$

$$c.c. \ \xi_B \ -\alpha_k \ -\alpha_k^* \ \xi_B \end{cases} \qquad \xi_{AB} = D_0 - D_1 k^2$$



This principle of **helicity inversion** induced topological phase can be achieved intrinsically, artificially, or via interaction in condensed matter and optical lattices. TD, Balatsky, Nat. Commun. **4**, 1972 (2013).



Nepal Banerjee, TD (2019)

S. Ray, K. Roy, TD (2016)

Gaurav Gupta, TD (2016). Y. L. Chen et al. Nat. Phys. 9, 714 (2013)

$$\psi = (\psi_{A\uparrow} \ \psi_{A\downarrow} \ \psi_{B\uparrow} \ \psi_{B\downarrow})^T$$

$$H = \begin{cases} \xi_A & \alpha_k & \xi_{AB} & 0 \\ \alpha_k^* & \xi_A & 0 & \xi_{AB} \end{cases}$$

$$c.c. \quad \xi_B & -\alpha_k \\ -\alpha_k^* & \xi_B \end{cases}$$

$$\xi_A = k^2/m$$
  

$$\alpha_k = \alpha_R (k_y - ik_x)$$
  

$$\xi_{AB} = D_0 - D_1 k^2$$



#### Quantum Spin-Hall state : TR invariant

$$H = \xi_A I_{4\times 4} + \begin{pmatrix} h_k^+ & \mathbf{0} \\ \mathbf{0} & h_k^- \end{pmatrix}, \quad h_k^{\pm} = \xi_{AB} \sigma_z \pm \alpha'_k \sigma_x + \alpha''_k \sigma_y$$

Chern numbers  $C_{\pm} = \pm 1$ 

Condition: Dirac mass  $(\xi_{ABk})$  must change sign  $\xi_{ABk} = 0$  at  $\frac{D_0}{D_1} = k_0^2 > 0$ 

$$\psi = (\psi_{A\uparrow} \ \psi_{A\downarrow} \ \psi_{B\uparrow} \ \psi_{B\downarrow})^T$$

$$H = \begin{cases} \xi_A & \alpha_k & \xi_{AB} & 0 \\ \alpha_k^* & \xi_A & 0 & \xi_{AB} \end{cases}$$

$$c.c. \quad \xi_B & -\alpha_k \\ -\alpha_k^* & \xi_B \end{cases}$$

$$\xi_A = k^2/m$$
  

$$\alpha_k = \alpha_R (k_y - ik_x)$$
  

$$\xi_{AB} = D_0 - D_1 k^2$$



Quantum Spin-Hall state : TR invariant  

$$H = \xi_A I_{4\times 4} + \begin{pmatrix} h_k^+ & \mathbf{0} \\ \mathbf{0} & h_k^- \end{pmatrix}, \quad h_k^{\pm} = \xi_{AB} \sigma_z \pm \alpha'_k \sigma_x + \alpha''_k \sigma_y$$

Chern numbers  $C_{\pm} = \pm 1$ 

Condition: Dirac mass  $(\xi_{ABk})$  must change sign  $\xi_{ABk} = 0$  at  $\frac{D_0}{D_1} = k_0^2 > 0$ 



$$H_{\text{int}} = U \sum_{i \in (A,B)} n_{i\uparrow} n_{i\downarrow} + V \sum_{j \neq i \in (A,B)} n_i n_j$$

Spin: 
$$\mathbf{S}_i = \psi_i^{\dagger} \boldsymbol{\sigma} \psi_i$$
  
Chiral:  $\mathbf{T}_{\sigma} = \psi_{\sigma}^{\dagger} \boldsymbol{\tau} \psi_{\sigma}$ 

#### *T*-breaking order parameters:

 $FM/AF: \mathcal{M}^{\pm} = \frac{1}{2}(\langle S_A^z \rangle \pm \langle S_B^z \rangle) \qquad \qquad Exchange energy: \\ E_m = U\mathcal{M}^{\pm} \\ Chiral magnet/chiral sublattice: \mathcal{N}^{x/y} = \frac{1}{2}(\langle T_{\uparrow}^{x/y} \rangle \mp \langle T_{\downarrow}^{x/y} \rangle) \qquad \qquad E_m = V\mathcal{N}^{x/y}$ 

#### **Symmetry invariant**

|   | $T^2$ | <i>C</i> <sup>2</sup> | <i>S</i> <sup>2</sup> | P | (PT) <sup>2</sup> | <i>(CP)</i> <sup>2</sup> | <i>(CPT)</i> <sup>2</sup> | AZ (2D)              | Our result (2D)      | Sym broken order | • Topological phases |                                                     |                                                                    |                                                                |                                                       |                                                   |                               |  |
|---|-------|-----------------------|-----------------------|---|-------------------|--------------------------|---------------------------|----------------------|----------------------|------------------|----------------------|-----------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|-------------------------------|--|
|   | -1    | 1                     | 1                     |   |                   |                          |                           | $\mathbb{Z}_2$ (QSH) |                      |                  | 0                    |                                                     |                                                                    | D:                                                             |                                                       | ion                                               |                               |  |
|   | 0     | 1                     | 0                     | 1 | 0                 | -1                       | 0                         | Z (QAH)              | ℤ <sub>2</sub> (QSH) | FM               | Symi<br>T            | metry<br>C                                          | s                                                                  | 1                                                              | mens<br>2                                             | 3                                                 | 4                             |  |
| - | 0     | 1                     | 0                     | 1 | 0                 | 0                        | 0                         | Z (QAH)              | Z (QAH)              | FM               | 0                    | 0                                                   | 0                                                                  | 0                                                              | Z                                                     | 0                                                 | Z                             |  |
|   |       |                       |                       |   |                   |                          |                           |                      |                      |                  | 1                    | 0                                                   | 0                                                                  | 0                                                              | 0                                                     | 0                                                 | Z                             |  |
|   |       |                       |                       |   |                   |                          |                           |                      |                      |                  | 1                    | 1                                                   | 1                                                                  | Z                                                              | 0                                                     | 0                                                 | 0                             |  |
|   |       |                       |                       |   |                   |                          |                           |                      |                      |                  | 0                    | 1                                                   | 0                                                                  | Z2                                                             | Z                                                     | 0                                                 | 0                             |  |
|   |       |                       |                       |   |                   |                          |                           |                      |                      |                  | -1                   | 1                                                   | 1                                                                  | Z2                                                             | $\mathbb{Z}_2$                                        | $> \mathbb{Z}$                                    | 0                             |  |
|   |       |                       |                       |   |                   |                          |                           |                      |                      |                  | -1                   | 0                                                   | 0                                                                  | 0                                                              | $\mathbb{Z}_2$                                        | $\mathbb{Z}_2$                                    | Z                             |  |
|   |       |                       |                       |   |                   |                          |                           |                      |                      |                  | -1                   | -1                                                  | 1                                                                  |                                                                | 0                                                     | $\mathbb{Z}_2$                                    | Z2                            |  |
|   |       |                       |                       |   |                   |                          |                           |                      |                      |                  | 1                    | -1                                                  | 1                                                                  | 0                                                              | 0                                                     | Z                                                 | <sup>∡</sup> 2<br>0           |  |
|   |       |                       |                       |   |                   |                          |                           |                      |                      |                  |                      | T = T $C = C$ $S = Tc$ $P = Pc$ $Al$ $PR$ $Ch$ $RM$ | ime-<br>harg<br>C = C<br>arity<br>tland<br>B 55<br>iu, To<br>MP 88 | •reve<br>5e co<br>hiral<br>, Zir<br>5, 114<br>eo, So<br>8, 035 | ersal<br>njug<br>/su<br>nbau<br>2 (19<br>chny<br>5005 | gatic<br>blat<br>er (A<br>997).<br>der, 1<br>(201 | n<br>tice<br>Z),<br>Ryu<br>6) |  |

FM order: *CP*-protected  $\mathbb{Z}_2$  invariant $H_{int} = |E_m| \tau_z \otimes \sigma_z$ Dirac mass become different:  $\xi_{AB}^{\pm} = \xi_{AB} \pm |E_m|$  $C_{\pm} = \pm 1$  if  $\frac{(D_0 \pm E_m)}{D_1} > 0$  $E_m < D_0$ 

Quantum Spin-Hall state : TR invariant  $H = \xi_A I_{4\times 4} + \begin{pmatrix} h_k^+ & \mathbf{0} \\ \mathbf{0} & h_k^- \end{pmatrix}, \quad h_k^{\pm} = \xi_{AB} \sigma_z \pm \alpha'_k \sigma_x + \alpha''_k \sigma_y$ Chern numbers  $C_{\pm} = \pm 1$ Condition: Dirac mass  $(\xi_{ABk})$  much change sign  $\xi_{ABk} = 0 \quad at \quad \frac{D_0}{D_1} = k_0^2 > 0$ 







Quantum Spin-Hall state : TR invariant  $H = \xi_A I_{4\times 4} + \begin{pmatrix} h_k^+ & \mathbf{0} \\ \mathbf{0} & h_k^- \end{pmatrix}, \quad h_k^\pm = \xi_{AB} \sigma_z \pm \alpha'_k \sigma_x + \alpha''_k \sigma_y$ Chern numbers  $C_\pm = \pm 1$ Condition: Dirac mass  $(\xi_{ABk})$  much change sign  $\xi_{ABk} = 0 \quad at \quad \frac{D_0}{D_1} = k_0^2 > 0$ 



| FM order: CP-                     | protected $\mathbb{Z}_2$        | invariant                        |     |
|-----------------------------------|---------------------------------|----------------------------------|-----|
| $H_{int} =  E_m \tau_z \emptyset$ | $\otimes \sigma_z$              |                                  |     |
| Dirac mass bec                    | ome different: $\xi_{AB}^{\pm}$ | $\xi_{B} = \xi_{AB} \pm  E_{n} $ | 1   |
| $C_{-} = \pm 1$ if                | $\frac{(D_0 \pm E_m)}{2} > 0$   | $E_m < D_0$                      | QSH |
| $c_{\pm} = \pm 1$ II              | $D_1 \rightarrow 0$             |                                  |     |
| $C_{+} = 1$                       |                                 | $E_m > D_0$                      | QAH |
| $C_{-}=0$                         |                                 |                                  |     |

Quantum Spin-Hall state : TR invariant  $H = \xi_A I_{4\times 4} + \begin{pmatrix} h_k^+ & \mathbf{0} \\ \mathbf{0} & h_k^- \end{pmatrix}, \quad h_k^{\pm} = \xi_{AB} \sigma_z \pm \alpha'_k \sigma_x + \alpha''_k \sigma_y$ Chern numbers  $C_{\pm} = \pm 1$ Condition: Dirac mass  $(\xi_{ABk})$  much change sign  $\xi_{ABk} = 0 \quad at \quad \frac{D_0}{D_1} = k_0^2 > 0$ 



16

#### **Symmetry invariant**

| , | $T^2$    | <i>C</i> <sup>2</sup> | $S^2$ | P | ( <i>PT</i> ) <sup>2</sup> | <i>(CP)</i> <sup>2</sup> | <i>(CPT)</i> <sup>2</sup> | AZ (2D)              | Our result (2D)      | Sym broken order     | <b>Topological phases</b>                                |            |      |                |                |                |                |  |
|---|----------|-----------------------|-------|---|----------------------------|--------------------------|---------------------------|----------------------|----------------------|----------------------|----------------------------------------------------------|------------|------|----------------|----------------|----------------|----------------|--|
| - | 1        | 1                     | 1     |   |                            |                          |                           | $\mathbb{Z}_2$ (QSH) |                      |                      | 0                                                        |            |      |                |                | ion            |                |  |
| ( | )        | 1                     | 0     | 1 | 0                          | -1                       | 0                         | Z (QAH)              | ℤ <sub>2</sub> (QSH) | FM                   | Sym<br>T                                                 | metry<br>C | s    | 1              | 2              | 3              | 4              |  |
| ( | )        | 1                     | 0     | 1 | 0                          | 0                        | 0                         | Z (QAH)              | Z (QAH)              | FM                   | 0                                                        | 0          | 0    | 0              | Z              | 0              | Z              |  |
| ( | )        | 0                     | 1     | 1 | 0                          | 0                        | -1                        | 0                    | Z <sub>2</sub> (QSH) | Chiral magnet (CM    | ) 1                                                      | 0          | 0    | 0              | 0              | 0              | Z              |  |
|   | <b>,</b> | 0                     | 0     | 0 | 0                          | 0                        | -1                        | 7. (IOH)             | 7 (OSH)              | CM + <i>P</i> broken | 1                                                        | 1          | 1    | Z<br>Zo        | 0<br>Z         | 0              | 0<br>0         |  |
|   |          | 0                     | U     |   |                            |                          |                           |                      |                      |                      | -1                                                       | 1          | 1    | Z <sub>2</sub> | $\mathbb{Z}_2$ | Z              | 0              |  |
|   |          |                       |       |   |                            |                          |                           |                      |                      |                      | -1                                                       | 0          | 0    | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | Z              |  |
|   |          |                       |       |   |                            |                          |                           |                      |                      |                      | -1                                                       | -1         | 1    | Z              | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |  |
|   |          |                       |       |   |                            |                          |                           |                      |                      |                      | 0                                                        | -1         | 0    | 0              | Z              | 0              | $\mathbb{Z}_2$ |  |
|   |          |                       |       |   |                            |                          |                           |                      |                      |                      | 1                                                        | -1         | 1    | 0              | 0              | Z              | 0              |  |
|   |          |                       |       |   |                            |                          |                           |                      |                      |                      |                                                          | T = T      | ime- | reve           | ersal          | l              |                |  |
|   |          |                       |       |   |                            |                          |                           |                      |                      |                      | C = Charge conjugation<br>S = $TC$ =Chiral/sublatti      |            |      |                |                |                | n              |  |
|   |          |                       |       |   |                            |                          |                           |                      |                      |                      |                                                          |            |      |                |                |                | tice           |  |
|   |          |                       |       |   |                            |                          |                           |                      |                      |                      | P = Parity                                               |            |      |                |                |                |                |  |
|   |          |                       |       |   |                            |                          |                           |                      |                      |                      | Altland, Zirnbauer (AZ)                                  |            |      |                |                |                | ΔZ),           |  |
|   |          |                       |       |   |                            |                          |                           |                      |                      |                      | PRB <b>55</b> , 1142 (1997).<br>Chiu, Teo, Schnyder, Ryu |            |      |                |                |                |                |  |
|   |          |                       |       |   |                            |                          |                           |                      |                      |                      |                                                          |            |      |                |                |                | Ryu            |  |
|   |          |                       |       |   |                            |                          |                           |                      |                      |                      | RMP <b>88</b> , 035005 (2016)                            |            |      |                |                |                |                |  |

Chiral Magnet : *CPT-invariant* TI  

$$H_{int} = |E_m|\tau_z \otimes \sigma_0$$
  
Different Newtonian mass:  $h_k^{\pm} = h_k^{\pm} \pm |E_m|$   
 $H = \xi_A I_{4 \times 4} + \begin{pmatrix} h_k^+ + E_m & \mathbf{0} \\ \mathbf{0} & h_k^- - E_m \end{pmatrix}$ ,  
Newtonian mass does **not** affect the Chern number  
QSH (*CPT*)<sup>2</sup> = -1 But a linear operator  
Quantum Spin-Hall state : TR invariant  
 $H = \xi_A I_{4 \times 4} + \begin{pmatrix} h_k^+ & \mathbf{0} \\ \mathbf{0} & h_k^- \end{pmatrix}$ ,  $h_k^{\pm} = \xi_{AB} \sigma_z \pm \alpha'_k \sigma_x + \alpha''_k \sigma_y$   
Chern numbers  $C_{\pm} = \pm 1$   
Condition: Dirac mass ( $\xi_{ABk}$ ) much change sign

 $\xi_{ABk} = 0$  at  $\frac{D_0}{D_1} = k_0^2 > 0$ 



19

Chiral Magnet : *CPT-invariant* TI  $H_{int} = |E_m| \tau_z \otimes \sigma_0$ Different Newtonian mass:  $h_k^{\pm} = h_k^{\pm} \pm |E_m|$   $H = \xi_A I_{4 \times 4} + \begin{pmatrix} h_k^{+} + E_m & \mathbf{0} \\ \mathbf{0} & h_k^{-} - E_m \end{pmatrix}$ , Newtonian mass does **not** affect the Chern number QSH (*CPT*)<sup>2</sup> = -1 But a linear operator

Quantum Spin-Hall state : TR invariant  $H = \xi_A I_{4\times 4} + \begin{pmatrix} h_k^+ & \mathbf{0} \\ \mathbf{0} & h_k^- \end{pmatrix}, \quad h_k^\pm = \xi_{AB}\sigma_z \pm \alpha'_k\sigma_x + \alpha''_k\sigma_y$ Chern numbers  $C_\pm = \pm 1$ Condition: Dirac mass  $(\xi_{ABk})$  much change sign  $\xi_{ABk} = 0 \quad at \quad \frac{D_0}{D_1} = k_0^2 > 0$ 



#### Chiral Magnet : CPT-invariant TI

 $H_{int} = |E_m|\tau_z \otimes \sigma_0$ 

Different Newtonian mass:  $h_k^{\pm} = h_k^{\pm} \pm |E_m|$ 

#### Helical anomaly

With in-plane electric field:

$$\partial_{\mu}J^{\mu}_{\sigma} = \sigma \frac{e^2}{h}E$$

 $J^{\mu}_{\sigma} = (\rho_{\sigma}, \mathbf{J}_{\sigma})$ : **Chiral** charge, current per spin  $\sigma = \pm$ .

Total chiral charge:  $\rho = \frac{\rho_{\uparrow} + \rho_{\downarrow}}{2}$ Total chiral current:  $\mathbf{J} = \frac{\mathbf{J}_{\uparrow} + \mathbf{J}_{\downarrow}}{2}$ 

$$\partial_{\mu}J^{\mu} = 0$$

No chiral anomaly

Helical charge: 
$$\rho_s = \frac{\rho_{\uparrow} - \rho_{\downarrow}}{2}$$
  
Total chiral current:  $\mathbf{J}_s = \frac{\mathbf{J}_{\uparrow} - \mathbf{J}}{2}$   
 $\partial_{\mu} J_s^{\mu} = \frac{e^2}{h} E$ 

Helical anomaly

Steady state: 
$$J_s = \frac{e^2}{h}V$$

A new quantized anomaly indicator



#### Chiral Magnet : *CPT-invariant* TI

 $H_{int} = |E_m|\tau_z \otimes \sigma_0$ 

Different Newtonian mass:  $h_k^{\pm} = h_k^{\pm} \pm |E_m|$ 

#### Helical anomaly

With in-plane electric field:

$$\partial_{\mu}J^{\mu}_{\sigma} = \sigma \frac{e^2}{h}E$$

 $J^{\mu}_{\sigma} = (\rho_{\sigma}, \mathbf{J}_{\sigma})$ : Chiral charge, current per spin  $\sigma = \pm$ .

Total chiral charge:  $\rho = \frac{\rho_{\uparrow} + \rho_{\downarrow}}{2}$ Total chiral current:  $\mathbf{J} = \frac{\mathbf{J}_{\uparrow} + \mathbf{J}_{\downarrow}}{2}$ 

$$\partial_{\mu}J^{\mu} = 0$$

No chiral anomaly

Helical charge: 
$$\rho_s = \frac{\rho_{\uparrow} - \rho_{\downarrow}}{2}$$
  
Total chiral current:  $\mathbf{J}_s = \frac{\mathbf{J}_{\uparrow} - \mathbf{J}_{\downarrow}}{2}$ 

 $\partial_{\mu}J_{s}^{\mu} = \frac{e^{z}}{h}E$ 

Helical anomaly

Steady state: 
$$J_s = \frac{e^2}{h}V$$

A new quantized anomaly indicator



 $E_z = \mu_B \rho_s B$ 

 $\mathbf{J}_{\mathbf{s}} = \mu_B \; \frac{e^2}{h} \mathbf{B}$ 

22

#### **Symmetry invariant**

| $T^2$ | <i>C</i> <sup>2</sup> | <i>S</i> <sup>2</sup> | P | <i>(PT)</i> <sup>2</sup> | <i>(CP)</i> <sup>2</sup> | <i>(CPT)</i> <sup>2</sup> | AZ (2D)              | Our result (2D)             | Sym broken order                          |                              | Торо   | logi   | cal p          | has      | ses            |                |
|-------|-----------------------|-----------------------|---|--------------------------|--------------------------|---------------------------|----------------------|-----------------------------|-------------------------------------------|------------------------------|--------|--------|----------------|----------|----------------|----------------|
| -1    | 1                     | 1                     |   |                          |                          |                           | $\mathbb{Z}_2$ (QSH) |                             |                                           | Cum                          |        |        |                | mone     | vion           |                |
| 0     | 1                     | 0                     | 1 | 0                        | -1                       | 0                         | Z (QAH)              | ℤ <sub>2</sub> (QSH)        | FM                                        | T                            | C      | s      | 1              | 2        | 3              | 4              |
| 0     | 1                     | 0                     | 1 | 0                        | 0                        | 0                         | Z (QAH)              | Z (QAH)                     | FM                                        | 0                            | 0      | 0      | 0              | Z        | 0              | Z              |
| 0     | 0                     | 1                     | 1 | 0                        | 0                        | -1                        | 0                    | Z <sub>2</sub> (QSH)        | Chiral magnet (CM                         | ) 1                          | 0      | 0      | 0              | 0        | 0              | Z              |
| 0     | 0                     | 0                     | 0 | 0                        | 0                        | -1                        | Z (IOH)              | Z = (OSH)                   | CM + <i>P</i> broken                      | 1                            | 1      | 1<br>0 | Z<br>Z2        | 0<br>Z   | 0              | 0<br>0         |
| 0     | 1                     | 0                     | 0 | -1                       | 0                        | -1                        | Z                    | $\mathbb{Z}_2$ (Anomalous s | pin Hall) AF                              | -1<br>-1                     | 1<br>0 | 1<br>0 | Z <sub>2</sub> | Z2<br>Za | Z<br>Za        | 0<br>Z         |
|       |                       |                       |   |                          |                          |                           |                      |                             |                                           | -1                           | -1     | 1      | Z              | 0        | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
|       |                       |                       |   |                          |                          |                           |                      |                             |                                           | 0                            | -1     | 0      | 0              | Z        | 0              | $\mathbb{Z}_2$ |
|       |                       |                       |   |                          |                          |                           |                      |                             |                                           | 1                            | -1     | 1      | 0              | 0        | Z              | 0              |
|       |                       |                       |   |                          |                          |                           |                      |                             |                                           |                              | T = T  | ime-   | reve           | ersal    | l              |                |
|       |                       |                       |   |                          |                          |                           |                      |                             | C = Charge conjugatiS = TC = Chiral/subla |                              |        |        |                |          | gatio          | n              |
|       |                       |                       |   |                          |                          |                           |                      |                             |                                           |                              |        |        |                |          | blat           | tice           |
|       |                       |                       |   |                          |                          |                           |                      |                             |                                           | P = Parity                   |        |        |                |          |                |                |
|       |                       |                       |   |                          |                          |                           |                      |                             |                                           | Altland, Zirnbauer (AZ       |        |        |                |          |                | $(\mathbf{Z})$ |
|       |                       |                       |   |                          |                          |                           |                      |                             |                                           | PRB <b>55</b> , 1142 (1997). |        |        |                |          |                |                |
|       |                       |                       |   |                          |                          |                           |                      |                             | Chiu, Teo, Schnyder, R                    |                              |        |        |                |          |                | Ryu            |
|       |                       |                       |   |                          |                          |                           |                      |                             | RMP <b>88</b> , 035005 (201               |                              |        |        |                |          |                |                |

#### AF order: *PT*-invariant TI

 $H_{int} = |E_m| \tau_x \otimes \sigma_x$ 

Off diagonal terms. Chern number is not defined.

Bulk bands are adiabatically connected to the QSH state.

So what is the topological anomaly?

Quantum Spin-Hall state : TR invariant

$$H = \xi_A I_{4\times 4} + \begin{pmatrix} h_k^+ & \mathbf{0} \\ \mathbf{0} & h_k^- \end{pmatrix}, \quad h_k^\pm = \xi_{AB} \sigma_z \pm \alpha'_k \sigma_x + \alpha''_k \sigma_y$$

Chern numbers  $C_{\pm} = \pm 1$ 

Condition: Dirac mass  $(\xi_{ABk})$  much change sign  $\xi_{ABk} = 0$  at  $\frac{D_0}{D_1} = k_0^2 > 0$ 



#### AF order: *PT*-invariant TI

 $H_{int} = |E_m|\tau_x \otimes \sigma_x$ 

Off diagonal terms. Chern number is not defined.

Bulk bands are adiabatically connected to the QSH state.

So what is the topological anomaly?

![](_page_22_Figure_6.jpeg)

#### AF order: *PT*-invariant TI

 $H_{int} = |E_m| \tau_x \otimes \sigma_x$ 

Off diagonal terms. Chern number is not defined.

Bulk bands are adiabatically connected to the QSH state.

So what is the topological anomaly?

 $\xi_A + E_m \quad \alpha_k \qquad \xi_{AB} + iE_m \quad 0$  $\alpha_k^* \qquad \xi_A - E_m \ 0 \qquad \xi_{AB} - iE_m$ H = $\begin{aligned} \xi_B - E_m & -\alpha_k \\ -\alpha_k^* & \xi_B + E_m \end{aligned}$ *C.C.* Jackiw-Rossi model:  $H = \alpha_k \cdot \gamma + \tilde{\xi}_{AB} \cdot \Gamma$ Nucl. Phys. B 190, 681 (1981) Complex hopping (vortex):  $\tilde{\xi}_{AB} = \xi_{AB} + iE_m$  $\theta_k = \tan^{-1} \frac{E_m}{\xi_{AB}}$   $\nabla \theta_k = \pi \delta(k - k_0) \hat{k}$ (Across the band inversion:  $\xi_{ABk} = 0$ )  $\sigma_{xy}^{\pm} = \pm \frac{e^2}{\pi h} \frac{1}{(2\pi)^2} \int d\mathbf{k} \cdot \nabla \theta_k$  $=\pm\frac{e^2k_0}{2\pi h}$ Anomalous spin edge current:  $\partial_{\mu}J^{\mu}_{+} = (\partial_{\mu}\sigma^{\pm}_{xy})E$ 

![](_page_23_Figure_6.jpeg)

#### **Symmetry invariant**

|   | $T^2$ | <i>C</i> <sup>2</sup> | $S^2$ | Р | ( <i>PT</i> ) <sup>2</sup> | <i>(CP)</i> <sup>2</sup> | <i>(CPT)</i> <sup>2</sup> | AZ (2D)              | Our result (2D)             | Sym broken order                     | <b>Topological phases</b>                                            |          |        |                |          |                |                 |  |  |
|---|-------|-----------------------|-------|---|----------------------------|--------------------------|---------------------------|----------------------|-----------------------------|--------------------------------------|----------------------------------------------------------------------|----------|--------|----------------|----------|----------------|-----------------|--|--|
|   | -1    | 1                     | 1     |   |                            |                          |                           | $\mathbb{Z}_2$ (QSH) |                             |                                      | 0                                                                    |          |        |                | mone     | ion            |                 |  |  |
|   | 0     | 1                     | 0     | 1 | 0                          | -1                       | 0                         | Z (QAH)              | ℤ <sub>2</sub> (QSH)        | FM                                   | Syn<br>T                                                             | C C      | s      | 1              | 2        | 3              | 4               |  |  |
| - | 0     | 1                     | 0     | 1 | 0                          | 0                        | 0                         | Z (QAH)              | Z (QAH)                     | FM                                   | 0                                                                    | 0        | 0      | 0              | Z        | 0              | Z               |  |  |
| - | 0     | 0                     | 1     | 1 | 0                          | 0                        | -1                        | 0                    | Z - (OSH)                   | Chiral magnet (CM                    | ) 1                                                                  | 0        | 0      | 0              | 0        | 0              | Z               |  |  |
| + |       |                       |       |   |                            |                          |                           |                      | 200-5                       |                                      | 1                                                                    | 1        | 1      | Z              | 0        | 0              | 0               |  |  |
|   | 0     | 0                     | 0     | 0 | 0                          | 0                        | -1                        | Z (IQH)              | ℤ <sub>2</sub> (QSH)        | CM + P broken                        | 0                                                                    | 1        | 0      | $\mathbb{Z}_2$ | Z        | 0              | 0               |  |  |
|   | 0     | 1                     | 0     | 0 | -1                         | 0                        | -1                        | Z                    | $\mathbb{Z}_2$ (Anomalous s | pin Hall) AF                         | -1<br>-1                                                             | 1<br>0   | 1<br>0 | ℤ₂<br>0        | Z2<br>Z2 | Z<br>Z2        | 0<br>Z          |  |  |
|   | 0     | 1                     | 0     | 1 | 0                          | -1                       | 0                         | Z (QAH)              | ℤ <sub>2</sub> (ASH)        | Chiral sublattice (                  | $(S)_0^{-1}$                                                         | -1<br>-1 | 1      | Z              | 0<br>7   | $\mathbb{Z}_2$ | Z2<br>Ze        |  |  |
| - |       |                       |       |   |                            |                          |                           |                      |                             |                                      | 1                                                                    | -1       | 1      | 0              | 0        | Z              | 2 <u>2</u><br>0 |  |  |
|   |       |                       |       |   |                            |                          |                           |                      |                             |                                      |                                                                      | T = T    | ime-   | reve           | rsal     | atio           |                 |  |  |
|   |       |                       |       |   |                            |                          |                           |                      |                             | S = TC = Chiral/sublatt $P = Parity$ |                                                                      |          |        |                |          |                | tico            |  |  |
|   |       |                       |       |   |                            |                          |                           |                      |                             |                                      |                                                                      |          |        |                |          |                | lice            |  |  |
|   |       |                       |       |   |                            |                          |                           |                      |                             |                                      |                                                                      |          |        |                |          |                |                 |  |  |
|   |       |                       |       |   |                            |                          |                           |                      |                             |                                      | Altland, Zirnbauer (AZ),<br>PRB <b>55</b> , 1142 (1997).             |          |        |                |          |                |                 |  |  |
|   |       |                       |       |   |                            |                          |                           |                      |                             |                                      |                                                                      |          |        |                |          |                |                 |  |  |
|   |       |                       |       |   |                            |                          |                           |                      |                             |                                      | Chiu, Teo, Schnyder, Ryu<br>$\mathbf{PMP}$ <b>88</b> , 035005 (2016) |          |        |                |          |                |                 |  |  |
|   |       |                       |       |   |                            |                          |                           |                      |                             | <b>KIVIP 00</b> , 053003 (2010)      |                                                                      |          |        |                |          |                |                 |  |  |

![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_26_Figure_1.jpeg)

Magneto-electric effect

 $J_x^{\pm} = \sigma_{xy}^{\pm} E_y$ 

Surface bound current:  $\mathbf{J} = \mathbf{\nabla} \times \mathbf{M}$ 

$$M_y^{\pm} = -\sigma_{xy}^{\pm} V$$

#### **Symmetry invariant**

|   | $T^2$ | <i>C</i> <sup>2</sup> | $S^2$ | P | (PT) <sup>2</sup> | <i>(CP)</i> <sup>2</sup> | <i>(CPT)</i> <sup>2</sup> | AZ (2D)              | Our result (2D)             | Sym broken order     | Τ                                                       | opolo                 | ogic        | cal p          | has          | es             |                     |  |  |
|---|-------|-----------------------|-------|---|-------------------|--------------------------|---------------------------|----------------------|-----------------------------|----------------------|---------------------------------------------------------|-----------------------|-------------|----------------|--------------|----------------|---------------------|--|--|
|   | -1    | 1                     | 1     |   |                   |                          |                           | $\mathbb{Z}_2$ (QSH) |                             |                      |                                                         |                       |             | D              |              |                |                     |  |  |
|   | 0     | 1                     | 0     | 1 | 0                 | -1                       | 0                         | Z (QAH)              | ℤ <sub>2</sub> (QSH)        | FM                   | Symme<br>T                                              | etry<br>C             | s           | ווס<br>1       | mens<br>2    | ion<br>3       | 4                   |  |  |
| - | 0     | 1                     | 0     | 1 | 0                 | 0                        | 0                         | Z (QAH)              | Z (QAH)                     | FM                   | 0                                                       | 0                     | 0           | 0              | Z            | 0              | Z                   |  |  |
|   | 0     | 0                     | 1     | 1 | 0                 | 0                        | -1                        | 0                    | 7 (OSH)                     | Chiral magnet (CM    | 0                                                       | 0                     | 1 0         | 0              | 0            | 2<br>0         | 0<br>Z              |  |  |
| + | 0     |                       | -     | - |                   |                          |                           |                      |                             |                      | 1                                                       | 1                     | 1           | Z              | 0            | 0              | 0                   |  |  |
|   | 0     | 0                     | 0     | 0 | 0                 | 0                        | -1                        | Z (IQH)              | Z <sub>2</sub> (QSH)        | CM + <i>P</i> broken | 0                                                       | 1                     | 0           | $\mathbb{Z}_2$ | Z            | 0              | 0                   |  |  |
|   | 0     | 1                     | 0     | 0 | -1                | 0                        | -1                        | Z                    | $\mathbb{Z}_2$ (Anomalous s | pin Hall) AF         | -1<br>-1                                                | 1<br>0                | 1 0         | ℤ₂<br>0        | Z2<br>Z2     | Z<br>Z2        | 0<br>Z              |  |  |
|   | 0     | 1                     | 0     | 1 | 0                 | -1                       | 0                         | Z (QAH)              | Z <sub>2</sub> (ASH)        | Chiral sublattice (( | $(S)_{0}^{-1}$                                          | -1<br>1               | 1           | Z              | 0            | $\mathbb{Z}_2$ | Z2                  |  |  |
| - | 0     | 0                     | 0     | 0 | -1                | -1                       | 0                         | Z (IQH)              | Z <sub>2</sub> (ASH)        | CS+ <i>P</i> broken  | 1                                                       | -1                    | 1           | 0              | 0            | Z              | <sup>2</sup> 2<br>0 |  |  |
|   | -1    | 1                     | 1     | 1 | -1                | 1                        | -1                        | Ζ2                   | Z 2                         | s, d SC (spinful)    | Т                                                       | ' = Tir               | ne-         | reve           | rsal         |                |                     |  |  |
|   | -1    | 1                     | 1     | 0 | 0                 | 0                        | 0                         | ℤ₂                   | Z 2                         | p SC (spinful)       | C<br>S                                                  | = Chancel = TC        | arge<br>=Cł | e con<br>niral | njug<br>/sul | atic<br>blat   | on<br>tice          |  |  |
| - | -1    | -1                    | 1     | 1 | -1                | -1                       | 1                         | 0                    | 0                           | s, d SC (spinless)   | P                                                       | = Pai                 | rity        |                | 7001         | 01010          |                     |  |  |
|   | -1    | -1                    | 1     | 0 | 0                 | 0                        | 0                         | 0                    | 0                           | p SC (spinless)      |                                                         | Altland, Zirnbauer (A |             |                |              |                |                     |  |  |
|   | 0     | -1                    | 0     | 1 | 0                 | -1                       | 0                         | Z                    | Z 2                         | FM, DM + SC          | PRB <b>55</b> , 1142 (1997).<br>Chiu, Teo. Schnyder, Ry |                       |             |                |              |                |                     |  |  |
|   | 0     | -1                    | 0     | 0 | 0                 | -1                       | 1                         | Z                    | $\mathbb{Z}/\mathbb{Z}_2$   | AF, SO + SC          |                                                         | RM                    | P 88        | , 035          | 005          | (201           | 6)                  |  |  |

# Conclusions

With symmetry breakings, is the *ten-fold* topological classification table modified?
 Z<sub>2</sub> topology can be robust to time-reversal symmetry breaking.
 Novel helical anomaly in 2+1D systems. (No chiral anomaly due to Z<sub>2</sub> invariance).
 Novel magneto-electric effect in 2+1 D.

>Novel quantization with respect to electric potential.

**Spin current**: 
$$J_s = \frac{e^2}{h}V$$

Helical magnetic effect:  $\mathbf{J} = \mu_B \frac{e^2}{h} \mathbf{B}$ 

$$M_y^{\pm} = -\sigma_{xy}^{\pm} V$$