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Motivation

Recent interest in ‘Magic angles’ in twisted bilayer
graphene [1].

Ultraflat bands, spatially localised at the AA
stacking site.

Unconventional superconductivity and Mott
physics [2].

Twisted bilayer transition metal dichalcogenides
(TMDs) show similar flat bands [3].

What is the origin of these flat bands in twisted
bilayer TMDs?

1. R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. 108,
12233 (2011).

2. Y. Cao et al, Nature 556, 43 (2018); Y. Cao et al, Nature 556, 80
(2018).
3. Mit Naik and Manish Jain, Phys. Rev. Lett. 121, 266401 (2018).
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Moiré patterns in twisted bilayer MoS2 (tBLM)

Introducing a small-angle twist between the two layers of bilayer
MoS2 leads to the formation of a Moiré pattern.

We study these Moire patterns for twist angles close to 0◦ and 60◦.

A geometrically commensurate superlattice is generated for each
angle using the Twister code [1].

1. http://www.physics.iisc.ernet.in/~mjain/software.html
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Computational Details – Multiscale approach

DFT calculations for the larger angles[1]

are performed using Quantum Espresso.

Smaller angles contain too many atoms.

Use ab initio calculations to parametrize
Kolmogorov-Crespi Force-fields[2] for
relaxation.

Use SIESTA code for the electronic
structure.

Angle Atoms

5.1, 54.9 762

3.5, 56.5 1626

2.6, 57.4 2814

2, 58 5514

1.5, 58.5 8322

1. Mit H. Naik and Manish Jain, Phys. Rev. Lett. 121 266401 (2018).
2. Mit H. Naik, Indrajit Maity, Prabal K. Maiti and Manish Jain, J. Phys. Chem. C 123
9770-9778 (2019).
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Stackings in BLM

Five unique high-symmetry stackings.
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3.5◦ twist angle, M3.5

Along diagonal of M3.5
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3.5◦ twist angle, M3.5

Along diagonal of M3.5
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56.5◦ twist angle, M56.5

Along diagonal of M56.5
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56.5◦ twist angle, M56.5

Along diagonal of M56.5

Novel Phases of Quantum Matter 7 / 29



Interlayer spacings (ILS) in the Moiré
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In-plane displacements, M56.5

Novel Phases of Quantum Matter 9 / 29



Order-parameter

Order-parameter defined as the shortest displacement vector that
takes any given stacking to the highest energy stacking in the
corresponding Moiré pattern.

A simple translation cannot transform AB to AA stacking. We hence
need two order parameters.

~u for angles close to 0◦, and ~v for angles close to 60◦
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A simple translation cannot transform AB to AA stacking. We hence
need two order parameters.

~u for angles close to 0◦, and ~v for angles close to 60◦

Novel Phases of Quantum Matter 10 / 29



Order-parameter
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Order-parameter distribution

Unrelaxed:
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Order-parameter distribution

Upon relaxation, trade-off between induced strain and energy minimization
by displacing to a stable stacking.
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Interlayer spacing and strain distribution
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Shear-strain soliton
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Electronic structure
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Electronic structure
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Electronic structure
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Localisation, 2.65◦ MSL
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Electronic structure of individual stackings

At their equilibrium interlayer spacing.
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Electronic structure of individual stackings

At their equilibrium interlayer spacing.
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Hybridisation between layers

Barrier potential between layers: measure of the hybridisation between the
layers.
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Confining Potential

∆V (x, y) = VMSL(x, y) − V̄AB

VMSL(x0, y0) =

∫
Auc

(
1

2L0

∫ L0

−L0

VMSL(x, y, z)dz

)
dxdy

is the z and macroscopic averaged potential in the MSL.

V̄AB is unit-cell averaged potential of AB stacking.
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Inhomogeneous hybridisation in moiré

Localization governed by local barrier potential between the layers:

Confining potential Inhomogeneous hybridization
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Evolution of band structure near 0◦
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58◦ MSL
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58◦ MSL

Equilateral triangle quantum well states.
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58◦ MSL

Equilateral triangle quantum well states.

Spatially separated electrons and holes.
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58◦ MSL: origin of localisation

Combined effect of inhmogeneous hybridisation and additional confining
potential:
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Effect of strains, 57.35◦ MSL
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Effect of strains, 57.35◦ MSL
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Density of states for twisted Moiré patterns
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Conclusions

We show that there are no magic angles in small-angle twisted bilayer
MoS2 and expect similar phenomenon in other TMD bilayers.

Demonstrate the formation of triangular quantum dots with spatially
separated electrons and holes for twist angles close to 60◦.

Relaxations are crucial to get the correct picture for band localization
– unrelaxed structures show spurious flatbands and localization.

Mit H. Naik, Sudipta Kundu, Indrajit Maity and Manish Jain, arxiv:1908.10399.
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