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Why study the quantum geometry of correlated
many-particle states ?

I “Because its there”.
I It underlies the topological invariants.
I It has been useful in understanding insulating states



QHE: The Berry curvature

I The Hall conductivity identified with topological invariant,
the Chern number.

I For mean field states, the Chern number could be written
as an integral over the Brillioun zone of a geometric
quantity, the Berry curvature, constructed from the single
particle wavefunctions.

I The Berry curvature identified as the “anomalous velocty”,
the component of the velocity perpendicular to the electric
field.



Insulators



Insulators: The quantum metric

I Kohn’s idea the “Insulators can be distinguished by the
organisation of the electrons in the ground state”
interpreted as “Insulators can be distinguished by the
quantum geometry of the ground state” (Resta, Sorrella,...).

I The geometric object identified was the “localization
tensor” which is finite in the insulating phase and diverges
in the metallic phase.

I For mean field states, the localization tensor can be written
as an integral over the Brillioun zone, of the quantum
metric constructed from the single particle wavefunctions.



Our Objectives

I Topological invariants are theoretically well defined for
abritrary many-particle states, in terms of response to
twisted boundary conditions.

I The Berry curvature and quantum metric have been
defined in terms of the interacting Green’s functions. We
do not find the definition “satisfactory”.

Our aim is to:
I Provide a “satisfactory definition” of the quantum geometry

of arbitrary many-partcle states. I will present our
approach in this talk.

I Use the definition to study and analyse the geometry of a
variety of correlated many-fermion states and try to get
some feeling for what are the physically relevant quantities
in different situations. Hassan will present our first attempt
in the next talk.
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Quantum Kinematics



Physical states

I Physical states are in one-to-one correspondence with
rays in Hilbert space.

I Ray in the Hilbert space = Point in the projective Hilbert
space

|ψ〉 ∼ λ|ψ〉, λ ∈ C

For N level systems, CPN−1. For N = 2, CP1 =the Bloch
sphere.

I Physical state = Pure state density matrix

ρ(ψ) =
|ψ〉〈ψ|
〈ψ|ψ〉

I The inner-product defines a geometry of the space or rays.



Observables

O =
∑

n

|n〉On〈n| ≡
∑

n

Onρn

Consider the “transition probability",

|〈χ|O|ψ〉|2 =
∑

n

Ontr (ρχρnρψ)

Bargmann invariants:

B2(ψ1, ψ2) ≡ trρ(ψ1)ρ(ψ2)

= |〈ψ1|ψ2〉|2

B3(ψ1, ψ2, ψ3) ≡ trρ(ψ1)ρ(ψ2)ρ(ψ3)

= 〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉
. . . ≡ . . .



Distance and Geometric Phase

Distance:

(d12)2 = 1− (Tr (ρ1ρ2))
α
2 = 1− |〈ψ1|ψ2〉|α

Triangle inequalities satisfied for α ≥ 1.

Geometric phase (Pancharathnam-Berry Phase):

eiΩ123 =
Tr (ρ12ρ23ρ31)

|Tr (ρ12ρ23ρ31) |
=
〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉
|〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉|



Quantum metric

Consider a subspace of the ray-space parameterised by local
coordinates, ρ(ξ), ξi , i = 1, . . . ,N,

d2(ξ + dξ, ξ) =
α

4
tr (∂aρ(ξ)∂bρ(ξ)) dξadξb

gab(ξ) =
α

4
tr (∂aρ(ξ)∂bρ(ξ))



Berry curvature

Ω(ξ, ξ + dξ1, ξ + dξ2) = Fab(ξ) dξa ∧ dξb

Fab(ξ) ≡ 1
2i

tr (ρ(ξ) [∂aρ(ξ), ∂bρ(ξ)])
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Notation
I Single particle hamiltonian:

hαβ(k), α, β = 1, . . . ,NB, k ∈ BZ

I Single particle spectrum:

hαβ(k)un
β(k) = εn(k)un

α(k)

ρn
αβ(k) = un

α(k) (un(k)β) ∗

I Fermion operators:

Cn(k) ≡
∑
α

un
α(k)Cα(k)

I Mean field states:

|MF 〉 =
∏
kocc

C†1(k)|0〉



Distances and Geometric phases in the Brillioun zone

d2
n (k1, k2) ≡ 1− trρn(k1)ρn(k2)

eiΩ(k1,k2,k3) ≡ trρn(k1)ρn(k2)ρn(k3)

|trρn(k1)ρn(k2)ρn(k3)|

Visualising the geometry:

I Each band defines a mapping from the BZ to the single
particle space of rays, CPNB−1:

k → ρn(k)

I So the Fermi sea of occupied states is represented by a
surface in CPNB−1

I The distances and geometric phases on the embedding
space, CPNB−1 induce distances and phases on the
embedded surface defined by the Fermi sea



Our strategy

I For mean field states, express the distances and geometric
phases in terms of the expectation values of many-particle
hermitian operators. i.e. operators constructed from
(C,C†).

I Hypothesize that these operators represent observables
corresponding to distances and geometric phases.

I prove/disprove that expectation values of these operators
for abritrary states satisfy the geometric requirements:
I Triangle inequalities for the distances.
I Additivity law for the geometric phases.



Exchange operators and mean field states

Define the hermitian “exchange operators”

E(k1, k2)C†k1,α
C†k2β

E†(k1, k2) ≡ −C†k2,α
C†k1β

E(k1, k2)
(

un
α(k1)C†α(k1)

)(
un
β(k2)C†β(k2)

)
|0〉 =

−
(

un
α(k1)C†α(k2)

)(
un
β(k2)C†β(k1)

)
|0〉

〈MF |E(k1, k2)|MF 〉 =
∣∣∣(un(k1))

† un(k2)
∣∣∣2

d2(k1, k2) = 1− 〈MF |E(k1, k2)|MF 〉



Exchange operators and mean field states

Define the unitary “cyclic operators”

C(k1, k2, k3)C†k1,α
C†k2β

C†k3γ
C†(k1, k2, k3) ≡ C†k2,α

C†k3β
C†k1γ

C(k1, k2, k3) = E(k1, k2)E(k1, k3)

eiΩ(k1,k2,k3) =
〈MF |C(k1, k2, k3)|MF 〉
|〈MF |C(k1, k2, k3)|MF 〉|
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Quantum distances for correlated states

Question:
Do

d2(k1, k2) ≡ 1− 〈ψ|E(k1, k2)|ψ〉

satisfy the triangle inequalities ?

d(k1, k2) + d(k2, k3) ≥ d(k3, k1)....

for abritrary |ψ〉 ?
Answer:
Yay ! They do! Proof using “Ptolemy inequalities”.



Geometric phases for correlated states

Question:
Do

eiΩ(k1,k2,k3) ≡ 〈ψ|C(k1, k2, k3)|ψ〉
|〈ψ|C(k1, k2, k3)|ψ〉|

Satisfy the additive law ?

Answer:
Sadly, they do not ! Many numerically generated counter
examples.



The Green’s function approach

I Use the Green’s function of the interacting theory to define
“an effective single particle hamiltonian"

G−1
αβ (iω, k) =

(
G−1
βα(−iω, k)

)∗
⇒
(

G−1(0, k)
)†

= G−1(0, k)

heff (k) ≡ G−1(0, k)

Use the eigenfunctions to construct quantum distances
and geometric phases.

I “Unsatisfactory” in our opinion because,
I It implies that the geometry of all correlated states is the

same as that of some mean field state.
I Consequently, the quantum geometry partially filled

interacting one-band models are trivial.



1-band models

I Our approach gives non-trivial results for partially filled,
one-band models.

I In the context of the 1-dimensional t − V model, we are
able correlate the geometry with the known metal-insulator
transition in the model (Luttinger liquid - CDW). Our
analysis in the next talk.

I For translationally invariant 1-band models:

d2(k1, k2) = 〈(nk1 − nk2)2〉

where nk = C†kCk .
So far, we have analysed the geometry using exact
diagonalisation of small systems. But other techniques can
be used for larger systems.



Thank You !


	Motivation
	Quantum geometry
	Mean field states
	Correlated states

