Emergent geometric frustration and flat bands in twisted bilayer graphene

Hridis Pal
IIT Bombay, India

December 30, 2019

Acknowledgement

Markus Kindermann

Stephen Spitz

Steven Carter

- H. K. Pal, S. Spitz, M. Kindermann, Phys. Rev. Lett. 123, 186402 (2019)
- H. K. Pal, S. Carter, and M. Kindermann, arXiv:1409.1971

NSF, DMR-1055799

The gist

Small angles

Layers coupled-
flat bands

Large angles

Layers dersupledno flat oanks

Layers coupledflat bands

Introduction

Twisted bilayer graphene

- AA

- Arbitrary angle

$?$

Current understanding

- Dirac cone preserved
- Velocity reduces at small angle but unaffected at large angle

Lopes dos Santos et al. ,PRL 99,256802 (2007); Laissardiere et al., Nano Lett. 10, 804 (2010)

Luican, et al., PRL 106, 126802 (2011)

Current understanding (cont'd.)

- Magic angles: recurring zero velocity and localization ([国1/[]

- Complete understanding of the small angle physics in nonperturbative regime is lacking - needs more work
H. K. Pal, arXiv : 1805.08803
G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Phys. Rev. Lett. 122, 106405 (2019)

Experimental discovery of correlation effects

Correlated insulating phase at half-filling

Cao et al., Nature 556, 80 (2018)

Cao et al., Nature 556, 43 (2018)

Further experiments

Tuning superconductivity in twisted bilayer graphene

```
Matthew Yankowitz1,*, Shaowen Chen }\mp@subsup{}{}{1,2,*},\mathrm{ Hryhoriy Polshyn }\mp@subsup{}{}{3,*},\mp@subsup{\mathrm{ Yuxuan Zhang }}{}{3}, K. Watanabe ' , T. Taniguchi'4, David Graf 5,
Andrea F. Young }\mp@subsup{}{}{3,\dagger}\mathrm{ , Cory R. Dean }\mp@subsup{}{}{1,\dagger
'Department of Physics,Columbia University, New York, NY 10027, USA.
2}\mathrm{ 2Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA.
3}\mathrm{ Department of Physics, University of California, Santa Barbara, CA 93106, USA.
```

${ }^{4}$ National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
${ }^{5}$ National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
${ }^{+}$Corresponding author. Email: afy2003@ucsb.edu (A.F.Y.); cd2478@columbia.eı
\downarrow^{*} These authors contributed equally to this work.

- Hide authors and affiliations

Science 08 Mar 2019

Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene

Xiaobo Lu, Petr Stepanov, Wei Yang, Ming Xie, Mohammed Ali Aamir, Ipsita Das, Carles Urgell, Kenji Watanabe, Takashi Taniguchi, Guangyu Zhang, Adrian Bachtold, Allan H. MacDonald \& Dmitri K. Efetov \boxminus
Nature 574, 653-657(2019) | Cite this article

Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle

[^0]
Long-wavelength theory

- Length scale: $|\Delta \boldsymbol{K}|=|\boldsymbol{K}(\theta)-\boldsymbol{K}|=2 K \sin (\theta / 2)$ Require: $|\Delta K| \ll K$, i.e., 园 $\ll 1$ (measured from AA or AB).
- Energy scales: interlayer coupling t and $v_{F} \Delta K$.

Long-wavelength theories (cont'd)

- Expand around $\mathrm{K}\left(\mathrm{K}^{\prime}\right)$ point

$$
\begin{aligned}
H_{1}= & v_{F} \sum_{\mathbf{k}} \psi_{\mathbf{k}}^{\dagger} \sigma \cdot \mathbf{k} \psi_{\mathbf{k}}, H_{2}=v_{F} \sum_{\mathbf{k}} \psi_{\mathbf{k}}^{\dagger} \sigma^{\theta} \cdot(\mathbf{k}) \psi_{\mathbf{k}}, \\
H_{\text {int }}= & \sum_{\mathbf{k}, \mathbf{k}_{\theta}} \sum_{\alpha, \beta} \sum_{\mathbf{G}, \mathbf{G}^{\theta}} \tilde{t}(\mathbf{k}+\mathbf{K}+\mathbf{G}) e^{-i \mathbf{G} \cdot \tau_{\alpha}} e^{i \mathbf{G}^{\theta} \cdot \tau_{\beta}^{\theta}} \\
& \delta\left(\mathbf{k}^{\theta}-\mathbf{k}+\Delta \mathbf{K}+\mathbf{G}^{\theta}-\mathbf{G}\right) \psi_{\mathbf{k} \alpha}^{\dagger} \psi_{\mathbf{k}^{\theta} \beta},
\end{aligned}
$$

- Lowest Fourier component $\tilde{t}(\mathbf{K})=\gamma$
- Choose G, G ${ }^{\text {® }}$ such that \mid ? $\mathbf{K}+\mathbf{G}^{\text {® }} \mathbf{- G}|=|$? $\mathbf{K} \mid$

$$
\delta\left(\mathbf{k}^{\theta}-\mathbf{k}+\Delta \mathbf{K}+\mathbf{G}^{\theta}-\mathbf{G}\right) \Rightarrow \delta\left(\mathbf{k}^{\theta}-\mathbf{k}+\Delta \mathbf{K}_{n}\right)
$$

Long-wavelength theories (cont'd)

$$
\begin{aligned}
& \frac{\gamma}{v_{F} \Delta K}<1 \\
& H_{k}=\tilde{v} \boldsymbol{\sigma} \cdot \boldsymbol{k} \\
& \tilde{v}=v_{F}\left[1-\left(\frac{\gamma}{v_{F} \Delta K}\right)^{2}\right]
\end{aligned}
$$

- Small angle: Reduced velocity
- Large angle: velocity unchanged

The gist

Small angles

Layers coupled-
flat bands

Large angles

Layers dersupledno flat oanks

Layers coupledflat bands

Our theory

Geometry

Mutually rotated graphene layers

Commensuration

Sublattice odd (SEO)
Only AA matches
$>$ Similar to AA bilayer

Mele, PRB 81, 161405R (2010)

Starting point: commensuration

$$
\begin{aligned}
H_{\mathrm{int}}= & \sum_{\mathbf{k}, \mathbf{k}_{\theta}} \sum_{\alpha, \beta} \sum_{\mathbf{G}, \mathbf{G}^{\theta}} \tilde{t}(\mathbf{k}+\mathbf{K}+\mathbf{G}) e^{-i \mathbf{G} \cdot \tau_{\alpha}} e^{i \mathbf{G}^{\theta} \cdot \tau_{\beta}^{\theta}} \\
& \delta\left(\mathbf{k}^{\theta}-\mathbf{k}+\Delta \mathbf{K}+\mathbf{G}^{\theta}-\mathbf{G}\right) \psi_{\mathbf{k} \alpha}^{\dagger} \psi_{\mathbf{k}^{\theta} \beta}
\end{aligned}
$$

- Commensuration in real space implies commensuration in reciprocal space
- Choose G, $\mathbf{G}^{\text {® }}$ such that $\mathbf{K}+\mathbf{G}=\mathbf{K}($ (回) $+\mathbf{G}$

- Use higher Fourier component: $\tilde{t}(\mathbf{K}+\mathbf{G})=\mathcal{V}$

$$
\delta\left(\mathbf{k}^{\theta}-\mathbf{k}+\Delta \mathbf{K}+\mathbf{G}^{\theta}-\mathbf{G}\right) \Rightarrow \delta\left(\mathbf{k}^{\theta}-\mathbf{k}\right)
$$

Commensuration effects

- Consequences
- Introduces mass: curvature and, in some cases, gap
- Energy scale: $\tilde{t}(\mathbf{K}+\mathbf{G})=\mathcal{V}$ <<
- Gap appreciable only at certain angles with small supercell

38.21 ?
- Numerical estimate of $\tilde{t}(\mathbf{K}+\mathbf{G})=\mathcal{V}$
\longrightarrow Tight binding ($p=1$)
SEE

Commensuration effects (cont'd.)

$\mathrm{SEO}+\mathrm{SEE}=$? $/ 3$

Small vs. large angle

Small angle

$>$ Small angle from some commensuration

Theory at angle near commensuration

- Consider angle ? near commensuration $?_{0}$
- 囵~1 but
- Formally try to expand around K point as before

$$
\begin{aligned}
H_{\mathrm{int}}= & \sum_{\mathbf{k}, \mathbf{k}_{\theta}} \sum_{\alpha, \beta} \sum_{\mathbf{G}, \mathbf{G}^{\theta}} \tilde{t}(\mathbf{k}+\mathbf{K}+\mathbf{G}) e^{-i \mathbf{G} \cdot \tau_{\alpha}} e^{i \mathbf{G}^{\theta} \cdot \tau_{\beta}^{\theta}} \\
& \delta\left(\mathbf{k}^{\theta}-\mathbf{k}+\Delta \mathbf{K}+\mathbf{G}^{\theta}-\mathbf{G}\right) \psi_{\mathbf{k} \alpha}^{\dagger} \psi_{\mathbf{k}^{\theta} \beta},
\end{aligned}
$$

Formally same as before

$$
\begin{aligned}
& \delta K=2|\mathbf{K}+\mathbf{G}| \sin (\delta \theta / 2) \ll K \\
& \text { but } \Delta K=2|\mathbf{K}| \sin (\theta / 2) \sim K
\end{aligned}
$$

Theory at angle near commensuration(cont'd.)

- Expand around $\mathbf{K}+\mathbf{G}$ instead of \mathbf{K}

1) Use ${ }^{2} K$ and not ${ }^{2} K$
2) Coupling energy scale reduced: use $\tilde{t}(\mathbf{K}+\mathbf{G})=\mathcal{V}$ and not $\tilde{t}(\mathbf{K})=\gamma$

- In real space:

$$
H_{\text {int }}(\mathbf{r})=(1) \sum_{n} e^{i \delta \mathbf{K}_{n} \cdot \mathbf{r}}\left(\begin{array}{cc}
1 & e^{-i \frac{2 \pi}{2}(n-p)} \\
e^{i \frac{2 \pi}{3}(n-l)} & e^{-i \frac{2 \pi}{3}(l-p)}
\end{array}\right) e^{-i \sigma_{z} \theta / 2}
$$

Here $\quad \mathbf{G}=l_{1} \mathbf{b}_{1}+l_{2} \mathbf{b}_{2}, \mathbf{G}^{\theta_{0}}=p_{1} \mathbf{b}_{1}^{\theta_{0}}+p_{2} \mathbf{b}_{2}^{\theta_{0}}$
and $\quad l=l_{1}+l_{2}, p=p_{1}+p_{1}$

- Reduces to small angle theory at ${ }^{2}=0$

System at large angles: local gaps

Real space (Non-perturbative limit: ? $_{3} / v_{F}$?K $\gg 1$)

Near $\theta_{0}=38.21^{\circ}$

Local gaps

Counter-propagating chiral modes

- Effective low-energy physics

$$
\begin{aligned}
& h_{\nu}=g_{\nu}(\mathbf{k}) \cdot \sigma \\
& N_{3}=\int d \mathbf{k} \mathbf{g} \cdot\left(\partial_{k_{x}} \mathbf{g} \times \partial_{k_{y}} \mathbf{g}\right) / 4 \pi|\mathbf{g}|^{3} \\
& N_{3}^{A}-N_{3}^{C}= \pm 1
\end{aligned}
$$

A

B

C

Network model

- Unitary scattering matrix for each scattering center
- Obey the symmetries of Hamiltonian:
- C_{3} symmetry around node
- Mirror reflection along line joining nodes
- Point reflection at midpoint of line joining nodes

$$
\begin{aligned}
& \mathcal{U}_{+}=\mathcal{U}_{-}=\chi^{i / p}\left(\begin{array}{ccc}
\alpha & \beta e^{i \lambda} & \beta e^{i \lambda} \\
\beta e^{i \lambda} & \alpha & \beta e^{i \lambda} \\
\beta e^{i \lambda} & \beta e^{i \lambda} & \alpha
\end{array}\right) \hookleftarrow \begin{array}{l}
\text { one } \\
\text { parameter } \\
\text { model! }
\end{array} \\
& \alpha=1 / \sqrt{1+8 \cos ^{2} \lambda} \text { and } \beta=-2 \cos \lambda / \sqrt{1+8 \cos ^{2} \lambda} .
\end{aligned}
$$

Network model: energy spectrum

- Use Bloch's theorem
- Exact analytical solution for the eigenstates!

$$
\begin{aligned}
& \varepsilon_{1}(\mathbf{k})=\left\{\begin{array}{lr}
\lambda \pm \frac{1}{2} \cos ^{-1}\left[\frac{\left(2 c_{\mathbf{k}}-1\right)(1+\cos 2 \lambda)-1}{(5+4 \cos 2 \lambda)}\right], & \text { dispersive } \\
\tan ^{-1}\left[\frac{\sin 2 \lambda}{2+\cos 2 \lambda}\right], & \text { Flat }
\end{array}\right. \\
& \varepsilon_{2}(\mathbf{k})=\varepsilon_{1}(\mathbf{k})+\pi, \\
& c_{\mathbf{k}}=\sum \cos \left(\mathbf{k}_{n} \cdot \mathbf{r}\right), \mathbf{k}_{n} \text { is vector } \mathbf{k} \text { rotated by } 2 \mathrm{n} / 3
\end{aligned}
$$

Features:

- Dirac points and flat band.
- Degeneracy at ? and K points in the superlattice BZ.
- Reminiscent of Kagome lattice!

Emergent Kagome lattice

- Similarity with Kagome lattice not accidental
- In the limit of strong backscattering at each scattering center, states get localized on each link
- Think of a TB model with lattice points on each link
- The emergent lattice is indeed Kagome!
- Origin of flat bands is, therefore, geometric frustration

Numerical confirmation

- Localization length scales as v_{F} /回 700 lattice constants
- In order to see localized modes, we need ${ }^{\text {? }} 10^{6}$ atoms
- Numerical calculation is challenging!
- Trick: use artificial coupling between the layers such that ? is enhanced
- Recall: $\tilde{t}(\mathbf{K}+\mathbf{G})=\mathcal{V}$
$t_{\perp}^{a r t}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)=t_{1} J_{0}(G \delta r) \theta_{\mathrm{H}}\left(\delta r-l_{0}\right)$

Numerical confirmation

- Tight-binding calculation near commensuration
- Choose $0=38.546$ 回 near commensuration at 38.213 回
- Lattice contains 010^{4} atoms

H. K. Pal, S. Spitz, M. Kindermann, Phys. Rev. Lett. 123, 186402 (2019)

Summary and Outlook

The gist

Twisted bilayer graphene

Small angles

Layers coupledflat bands

Large angles

- Layers coupled-flat bands
- Different from small angles
o Commensuration
- Topology
> Emergent frustration
- Look near 38.21?
- New correlation effects?

Extras

Extras

- DFT calculation showing no preference for any particular angle

Small angle vs large angle: comparison

- Flat bands are thus present at both large and small angles.
- But the underlying physics is very different in the two cases

Large angle

- Flat band persistent at non-perturbative regime
- Arises due to geometric frustration
- Electrons localized along AB-BA directions. AA regions gapped

Small angle

- Recurring flat bands at magic angles
- (?) Probably, particle-in-a- box-like confinement
- Electrons localized in AA regions gapped

Small angle vs large angle: localization

- Localization patterns at large and small angles are complementary

System at large angles: local gaps

Real space (Non-perturbative limit: 团/ v_{F} ? $\mathrm{K} \gg 1$)

Numerical confirmation

- Localization length scales as v_{F} /回 700 lattice constants
- In order to see localized modes, we need ${ }^{\text {? }} 10^{6}$ atoms
- Numerical calculation is challenging!
- Trick: use artificial coupling between the layers such that ? is enhanced
- Recall: $\tilde{t}(\mathbf{K}+\mathbf{G})=\mathcal{V}$

$$
t_{\perp}^{a r t}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)=V\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)+\eta g\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)
$$

$$
\begin{aligned}
& V\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)=t_{0} e^{-\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right| / l_{0}\right)^{2}} \\
& g\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)=t_{1} e^{-\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right| / l_{1}\right)^{2}} \cos \left(\left|\mathbf{K}+\mathbf{G} \| \mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
\end{aligned}
$$

Numerical confirmation

- Tight-binding calculation near commensuration
- Choose 目= 38.546? near commensuration at 38.213?
- Lattice contains ${ }^{\text {? }} 10^{4}$ atoms

Tincreasing

[^0]: Emilio Codecido ${ }^{1}$, Qiyue Wang ${ }^{2}$, Ryan Koester ${ }^{1}$, Shi Che ${ }^{1}$, Haidong Tian ${ }^{1}$, Rui Lv ${ }^{1}$, Son Tran ${ }^{1}$, Kenji Watanabe ${ }^{3}$, Takashi Taniguchi ${ }^{3}$, Fan Zhang ${ }^{2, *}$, Marc Bockrath ${ }^{1, *}$ and Chun Ning Lau ${ }^{1,{ }^{*}}$
 ${ }^{1}$ Department of Physics, The Ohio State University, Columbus, OH 43210, USA.
 ${ }^{2}$ Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA.
 ${ }^{3}$ National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
 」"Corresponding author. Email: zhang@utdallas.edu (F.Z.); bockrath.31@osu.edu (M.B.); lau.232@osu.edu (C.N.L.)

 - Hide authors and affiliations

