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Outline of the Talk

• Motivation (toy model building)
• Review of SU(2) nature of Dirac fermions
• Main three-band continuum Hamiltonian of interest
• A winding number understanding
• Symmetry perspective
• Graphene-like lattice model

• Relevance to 3D
• Geometric phase understanding
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Motivation

• Geometry of some parameter-dependent wavefunctions
• Imp examples: QHE, Topological Insulators/Semi-metals
• Often reciprocal momenta of bands are our parameters
• Familiar Dirac cones on Honeycomb lattice

• Suppression of backscattering, Klein tunneling, Hall Effects
• Naive Q: Why Berry phase winding of π ?
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Geometric Phase

• Arrows are of quantum mechanical origin for us
• Owing to phase differences of wavefunctions essentially
• But not fully...
• Notable examples: Focault’s pendulum, Pancharatnam’s

phase in Light polarization 4



Berry Phase Formulas

• Berry connection

• Berry curvature

• parameter R may be reciprocal momenta
• Berry phase winding around a degeneracy
• Chern number of a filled gapped band
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Why π?

• Formal argument goes back to Berry’s 1984 paper..
• A general two-band Hamiltonian with a degeneracy:

H = aσx + bσy + cσz

• H = B · S in other words for S = 1
2

• Berry phase is 0.5 solid angle subtended by path in Bloch
sphere

• 0.5 comes due to S = 1
2 SU(2) structure

• For two parameters, use symmetries to get rid of one
• Thus solid angle is 2π
• =⇒ Berry phase is π
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Why π?

• A pictorial/operational demo:

• Recall Dirac cone wavefunctions
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Go beyond π?

• More than two bands...
• Actually, can do it if we relax the degeneracy condition
• Gapped Dirac cones can enclose any fraction of π
• With degeneracy condition, look for three band

generalizations...
• A simple case:

• Essentially, H = B · S for S = 1 now
• Therefore, Berry phase is 0 mod 2π
• Notable case: α− T3 model (Orsay group)
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Three-band continuum Hamiltonian

• Instead consider

• Let’s look at the spectrum

• Line degeneracies emanate from a central three-fold
degeneracy

• Already gives a sense of non-Dirac geometry
• Goal to understand the geometry of this ...
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Some context

• Lot of attention Three-fold degeneracies/triple point fermions
• both in 2D and 3D

• almost all spin-1 cases
• One notable exception in 3D (“Nexus” fermions, Ref. 29)
• Precursor: Heikkila, Volovik, New J. Phys. 17, 093019, (2015) 10



Geometry of H3A

• Ref. 29’s argued beyond-Weyl band structure
• Similarly, we are going beyond-Dirac in 2D here..
• Can explicitly see how in this toy model
• Line degeneracies are important
• This precludes Berry phase calculation
• Monitor arrow plots...
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Geometry of H3A

• The three bands are intertwined ..

• Contrast with


0 px − ipy px + ipy

px + ipy 0 px − ipy

px − ipy px + ipy 0



• Main message: Analytic movement across line degeneracies 12



Geometry of H3A

• Explicit Eigensystem:
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• ei2θp/3 or z1/3 are non-analytic in complex plane
• For analytic embedding, need three Riemann surfaces
• e.g. at spectrum level,{
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Geometry of H3A: A winding number understanding

• ei2θp/3 factors makes the analytic movement explicit

• This motivates to write winding numbers using these factors
• However, we can’t circuit the three-fold degeneracy once
• Rather, need **three** circuits
• Beyond-Dirac comes because wavefunctions wind **twice**
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Symmetry Analysis

• Where could H3A come from?
• Essentially, three copies of honeycomb hoppings...

• For regular two band (spinless) honeycomb,
C2 (inversion or π rotation around centre of hexagon)
T (time reversal)
Px ,Py (x ,y reflections)
protect Dirac cone degeneracies

• Aside: C3 fixes them at K/K′ in honeycomb Brillouin zone
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Symmetry Analysis: SU(3) structure

• For two bands such a spinless symmetry analysis gives

HDirac =
∑

p
ĉ†µα(p) HDirac

µα,µ′α′ ĉµα(p) (1)

HDirac
µα,µ′α′ = px

(
τ3
µµ′ ⊗ σ1

αα′

)
+ py

(
τ0
µµ′ ⊗ σ2

αα′

)
(2)

which is nothing but Dirac cones at two valleys
• τ Pauli matrices index valleys, σ index sublattice
• In this way of writing, H3A looks like (at one valley)

H3A
K (p) = px (Λ1 + Λ4 + Λ6) + py (Λ2 + Λ5 − Λ7) (3)

where Λi are Gell-Mann matrices (generators of SU(3))
• Whereas

H3B
K (p) = px (Λ1 + Λ6) + py (Λ2 + Λ7) (4)

only use a subset (spin-1 generators of SU(2)) not surprisingly
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Symmetry Analysis: SU(3) structure

• H3A involves all off-diagonal Gell-Mann matrices
• Inspired by the lattice, only impose C2, T and Px ,Py but no
C3

• Also, anticipating valley structure along with sublattice
(τi ⊗ Λj) with functional coefficients fij(p)

• Locality gets rid of half, those involving τx , τy

• Further reduce using above symmetries, to lowest order...

H = px τ
3 ⊗ (f −Λ1 + l−1 (Λ4 + Λ6) + n−Λ8) +

py τ
0 ⊗ (g−Λ2 + m−2 (Λ5 − Λ7)) +

τ0 ⊗ (f +Λ1 + n+Λ8 + l+
1 (Λ4 + Λ6))

• large (8) parameter space for these Hamiltonians
• Aside: Imposing C3 can’t accomodate the H3A geometry
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Symmetry Analysis: What we learnt?

• Categorize the various resulting band structures
• H3A like band structure requires fine-tuning...
• Generic situation at the bottom:

• However, this multiple Dirac Cone organization is deriving
from the SU(3) structure

• Also, “mass” term (τ0 ⊗ Λ8) is allowed by symmetry 18



The Lattice Band structure

• Graphene-like Lattice hoppings with 3 sites per unit cell

• With symmetry allowed deformations, get the generic case
• with lattice induced curvature in bands 19



Relevance to 3D

• turns out in 3D, such three-fold degeneracy can be guaranteed
by symmetry

• Details in Ref. 29, G. Chang et al, Sci Rep (2017)
• Include proposed materials (Tungsten Carbide)
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Relevance to 3D

• Beyond-Weyl implied because any sphere enclosing three-fold
degenerate point encounters a gapless point due to emanating
line degeneracies

• H3A had the same feature/bug in 2D for any loop enclosing
the three-fold degneracy

• Inspite of this, we can understand the geometry in the 2D
quite well

• These gapless points are not a fundamental roadblock
• Analytic movement across them governs the geometry
• In fact, can give a 2D non-Abelian topological invariant
• Suspect our 2D understanding can help complete the 3D story
• Aside: Borophene material has our lattice
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Non-Abelian Geometry of H3A

• Since, the bands are intertwined, adiabatic evolution can not
remain in a single “band”

• it will happen across the three “bands”
• |ψa(t)〉 = e−i

∫ t dt′εb(λ(t′)) Uab(λ(t))|nb(λ(t))〉
• Under Schrodinger evolution, ˙Uab|nb〉+ Uab ˙|nb〉 = 0
• this leads to Non-Abelian Berry geometry (Wilczek & Zee)
• in 2D, can evaluate the holonomy U = P

[
e−i

∮
Ai dλi

]
• (Ai )ba = −i〈na|∂λi |nb〉 and U are 3× 3 matrices

• UK =


0 1 0
0 0 1
1 0 0

 UK ′ =


0 0 1
1 0 0
0 1 0


• can also compute Non-Abelian Berry curvature (Fxy ), trace of

its powers
• doesn’t give a signed invariant
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Conclusions and Outlook

• Details in Phys. Rev. B 100, 125152 (2019).
• A toy model of beyond-Dirac fermions
• Wavefunction Geometry is explicit
• pertinent to understanding 3D Nexus fermions
• Physical properties, Effect of Interactions: further topics

Acknowledgements

• G. Murthy, L. Santos
• NSF Grant DMR-1056536
• IRCC, IIT Bombay (17IRCCSG011)
• THANK YOU!

23


