Kelvin circulation theorem, dynamic metric, and FQHE

Dam Thanh Son (University of Chicago)
Novel Phases of Quantum Matter
ICTS, 27 December 2019

Broad view

- Fractional quantum Hall effect, rich physics
 - wave function, CFT
 - TQFT, anyons
 - flux attachment
 - LLL approaches (Shankar-Murthy...)
 - duality

Fractional quantum Hall effect

$$H = \sum_{a} \frac{(\mathbf{p}_a + e\mathbf{A}_a)^2}{2m} + \sum_{\langle a,b \rangle} \frac{e^2}{|\mathbf{x}_a - \mathbf{x}_b|}$$

Fractional quantum Hall effect

$$H = \sum_{a} \frac{(\mathbf{p}_a + e\mathbf{A}_a)^2}{2m} + \sum_{\langle a,b \rangle} \frac{e^2}{|\mathbf{x}_a - \mathbf{x}_b|}$$

Fractional quantum Hall effect

$$H = \sum_{a} \frac{(\mathbf{p}_a + e\mathbf{A}_a)^2}{2m} + \sum_{\langle a,b \rangle} \frac{e^2}{|\mathbf{x}_a - \mathbf{x}_b|}$$

$$H = P_{\text{LLL}} \sum_{a,b} \frac{e^2}{|\mathbf{x}_a - \mathbf{x}_b|}$$
Projection to

lowest Landau level

Rich phenomenology

gapped QH states at

$$\nu = \frac{N+1}{2N+1}$$

$$\nu = \frac{N}{2N+1}$$

Composite fermion

- Near half filling: a new quasiparticle
- Traditional view "composite fermion" = electron +
 2 flux quanta
- That picture however is not particle-hole symmetric
- New view: composite fermion as a "dual fermion"

Dirac composite fermion

- Composite fermions are "massless Dirac fermions": have Berry phase pi around any loop around p=0
- Number of CFs = 1/2 number of magnetic flux quanta
- CFs live in a magnetic field b = B 4 pi n_e
- Number of electron is NOT number of CFs

LLL projection

- Some fundamental questions remain:
 - is there projection to LLL in the composite fermion theory?
 - in particular, does the theory realize the algebra of the projected electron density operator (GMP algebra)
 - does density-density correlator ~ q^4 ?

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0$$

$$\rho \sim \frac{qj}{\omega}$$

$$\langle \rho \rho \rangle \sim q^2$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0$$

$$\rho \sim \frac{qj}{\omega}$$

$$\langle \rho \rho \rangle \sim q^2$$

$$\frac{\partial}{\partial t}(m\mathbf{j}) + \nabla \cdot \mathbf{T} = \mathbf{j} \times \mathbf{B}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0$$

$$\rho \sim \frac{qj}{\omega}$$

$$\langle \rho \rho \rangle \sim q^2$$

$$\frac{\partial}{\partial t}(m\mathbf{j}) + \nabla \cdot \mathbf{T} = \mathbf{j} \times \mathbf{B}$$

$$m \to 0$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0$$

$$\rho \sim \frac{qj}{\omega}$$

$$\langle \rho \rho \rangle \sim q^2$$

$$\frac{\partial}{\partial t}(m\mathbf{j}) + \nabla \cdot \mathbf{T} = \mathbf{j} \times \mathbf{B}$$

$$j \sim \frac{qT}{B}$$

$$m \to 0$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0$$

$$\rho \sim \frac{qj}{\omega} \sim q^2$$

$$\langle \rho \rho \rangle \sim q^2$$

$$\frac{\partial}{\partial t}(m\mathbf{j}) + \nabla \cdot \mathbf{T} = \mathbf{j} \times \mathbf{B}$$

$$j \sim \frac{qT}{B}$$

$$m \rightarrow 0$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0$$

$$\rho \sim \frac{qj}{\omega} \sim q^2$$

$$\langle \rho \rho \rangle \sim q^2 q^4$$

$$\frac{\partial}{\partial t}(\mathbf{m}\mathbf{j}) + \nabla \cdot \mathbf{T} = \mathbf{j} \times \mathbf{B}$$

$$j \sim \frac{qT}{B}$$

$$m \rightarrow 0$$

Spin of magnetoroton

- Lowest neutral excitation: magnetoroton (Girvin, MacDonald, Platzman 1986)
- near q=0: excitations can be classified by orbital angular momentum (spin)

$$\langle 0|\rho|0\rangle \sim \underbrace{\langle 0|\rho|\mathrm{MR},q\rangle}_{q^2} \underbrace{\langle \mathrm{MR},q|\rho|0\rangle}_{q^2} \sim q^4$$

$$\langle \text{spin} \pm n, q | \rho | 0 \rangle \sim (q_x \pm i q_y)^n$$

Magnetoroton at q=0 has spin 2 a dynamical graviton (Haldane)?

A fluid view on FQHE

- Quantum Hall fluid is a fluid, described by a hydrodynamic theory
- The fluid has an internal tensor degree of freedom: a dynamic "metric"
- Particles of the fluid are dipoles
- Provide a consistent and predictive picture of the long-distance behavior of QH fluids

Ref.: DTS 1907.07187 works with A. Gromov and D.X. Nguyen

A crash course in hydrodynamics

Hydrodynamics

Landau 1941

 can be formulated as a dynamical system with the Poisson brackets

$$\{\pi_i(\mathbf{x}), n(\mathbf{y})\} = n(\mathbf{x})\partial_i \delta(\mathbf{x} - \mathbf{y})$$
$$\{\pi_i(\mathbf{x}), \pi_j(\mathbf{y})\} = [\pi_j(\mathbf{x})\partial_i + \pi_i(\mathbf{y})\partial_j]\delta(\mathbf{x} - \mathbf{y})$$

and Hamiltonian

$$H = \int d\mathbf{x} \left[\frac{1}{2m} \frac{\vec{\pi}^2(\mathbf{x})}{n(\mathbf{x})} + \epsilon(n(\mathbf{x})) \right]$$

$$\dot{n} = \{H, n\}$$

$$\dot{\pi}_i = \{H, \pi_i\}$$

Extending Poisson algebra

- Let's introduce a "dynamical metric" $G_{ij}(x)$
- The fact that G_{ij} transforms like a tensor fixes the Poisson bracket

$$\{G_{ij}(\mathbf{x}), \pi_k(\mathbf{y})\} = (G_{ik}(\mathbf{x})\partial_j + G_{jk}(\mathbf{x})\partial_i + \partial_k G_{ij})\delta(\mathbf{x} - \mathbf{y})$$

• $\{G, G\} = ?$

Chiral metric hydro

In 2 spatial dimensions

$$\{G_{ij}(\mathbf{x}), G_{kl}(\mathbf{y})\} = -\frac{1}{s}(\varepsilon_{ik}G_{jk} + \varepsilon_{il}G_{jk} + \varepsilon_{jk}G_{il} + \varepsilon_{jl}G_{ik})\delta(\mathbf{x} - \mathbf{y})$$

- We can consistently impose $(\det G)^{1/2} = n$
- Hydrodynamics equations

$$\dot{A} = \{H, A\}$$

Qualitative discussion

• "Metric" perturbation: a gapped spin-2 mode

$$G_{ij}=n(\delta_{ij}+Q_{ij})$$
 $Q_{xx}=-Q_{yy}\sim\cos\omega t$ $Q_{xy}\sim\sin\omega t$ "Lamé constant" $\omega=rac{2\mu}{ns}$

At small frequencies, a fluid with Hall viscosity

$$\eta^H = \frac{sn}{2}$$
 s = average "orbital spin"

What is the relevance to FQHE?

CF Fermi surface

Low-energy, long-wavelength excitations: fluctuations of the shape of the Fermi surface

$$p_F(t, \mathbf{x}, \theta) = p_F^0 + \sum_{n = -\infty}^{\infty} u_n(t, \mathbf{x}) e^{-in\theta}.$$

One scalar field per spin

At low momenta we can limit ourselves to a few lowest modes

$$v_F q \ll \omega$$

Gij parametrizes an elliptical Fermi surface

"Nematic" hydrodynamics

- Degrees of freedom:
 - density

$$n(\mathbf{x}) = \int \frac{d\mathbf{p}}{(2\pi)^2} f(\mathbf{x}, \mathbf{p})$$

momentum density

$$\pi_i(\mathbf{x}) = \int \frac{d\mathbf{p}}{(2\pi)^2} p_i f(\mathbf{x}, \mathbf{p})$$

effective metric

$$\int \frac{d\mathbf{p}}{(2\pi)^2} p_i p_j f(\mathbf{x}, \mathbf{p}) = \frac{\pi_i \pi_j}{n} + \pi n(\mathbf{x}) G_{ij}(\mathbf{x})$$

$$\sqrt{\det G} = n$$

Chiral metric hydro

 The commutation relations can be "derived" from semiclassical arguments

s related from the Hall viscosity

= average "orbital spin" of composite fermion

$$\nu = \frac{N}{2N+1}$$

$$s = \frac{1}{N + \frac{1}{2}} \left(\frac{1}{2} \cdot 0 + 1 + 2 + \dots + N \right) = \frac{N(N+1)}{2N+1}.$$

Dipoles

- On the LLL, the CF are electric dipole
- dipole moment proportional to and perpendicular to momentum
- dipole density

$$\frac{\epsilon^{ij}\pi_j}{B}$$

Electron density

$$\rho = \frac{B-b}{4\pi} - \epsilon^{ij} \partial_i \left(\frac{\pi_j}{B}\right) \text{ dipole contribution}$$

$$= n - \frac{b + \omega}{4\pi}$$

$$\omega = \vec{\nabla} \times \left(\frac{\vec{\pi}}{n}\right)$$

"vorticity"

$$H = H_0[n, \pi_i, G_{ij}] + \int d\mathbf{x} \left(-a_0 n + \frac{\varepsilon^{ij} E_j}{B} \pi_i \right)$$

Kelvin's circulation theorem

1869

engineering.stackexchange.com

In ideal hydrodynamics vorticity is carried with the vorticity $\omega = \vec{\nabla} imes \left(rac{ec{\pi}}{n}
ight)$ flow

$$\dot{\omega} + \vec{\nabla} \cdot (\omega \vec{v}) = 0$$

Leads to an infinite number of conserved quantities (Casimirs of the Poisson algebra)

Kelvin's circulation theorem

 In the presence of magnetic field and metric degree of freedom, Kelvin's theorem is modified

$$\Omega = b + \omega + \frac{s}{2}\sqrt{G}R[G] \qquad \dot{\Omega} + \vec{\nabla} \cdot (\Omega \vec{v}) = 0$$

$$\rho_e = \frac{B}{4\pi} - \frac{b + \omega}{4\pi}$$

• Ω = constant

$$\delta \rho_{\rm e} = \frac{s}{8\pi} \sqrt{G} R[G].$$

An immediate consequence

$$\delta \rho_e = \frac{s}{8\pi} \sqrt{G} R[G] \sim \partial_i \partial_j G_{ij}$$
$$\rightarrow \langle \delta \rho_e \delta \rho_e \rangle_{\omega, q} \sim q^4$$

Property of the lowest Landau level

In fact, numerical coefficient can be found for $v = \frac{N}{2N + 1}$

$$\nu = \frac{N}{2N+1}$$

$$\langle \delta \rho_{\rm e} \delta \rho_{\rm e} \rangle_q = \frac{N(N+1)}{2N+1} \frac{q^4}{16\pi B} .$$

N=1: matches exactly with the Laughlin wave function

Conclusion

- Low-q regime of FQH liquid: described by a fluid with internal metric degree of freedom, coupled to a gauge field
- Electron density ~ curvature of dynamic metric
- Static structure factor: algebraic calculation

Thank you