Engineering Topological Phases :A Materials Perspective

Tanusri Saha-Dasgupta

http://www.bose.res.in/~tanusri/

Department of Condensed Matter Physics & Materials Science Thematic Unit of Computational Materials Science S. N. Bose National Centre for Basic Sciences, Kolkata, India

Topology "ZOO"

Topology (2016 Nobel prize)

Geometrical Topology:

"Same" if can be deformed without singularity. The value of an orientable surface's genus is equal to the number of holes! <u>Topological Invariant:</u> Quantity that does not change under continuous deformation

Band Structure Topology:

"Same" if can be adiabatically perturbed without gap closure.

Topological Invariant: Cannot change unless the energy gap between bands closes and reopens

Pancharatnam Berry Phase

Geometrical Phase

Leek et al, Science 21 Dec 2007

Berry Phase and Curvature in the BZ

Bloch function

T-invariant systems

"spin Chern number"

Each pair of spin-orbit-coupled bands in 2D has a Z_2 invariant, essentially integral over half the BZ

$$A_n^a(\mathbf{k}) = -i \langle \Psi_n(\mathbf{k}) | \frac{\partial}{\partial k_a} \Psi_n(\mathbf{k}) \rangle$$

"Berry connection": k-space analog of the magnetic vector potential.

$$F_n^{ab}(\boldsymbol{k}) = \frac{\partial}{\partial k_a} A_n^b(\boldsymbol{k}) - \frac{\partial}{\partial k_b} A_n^a.$$

"Berry curvature": k-space analog of magnetic flux density (gauge invariant)

the integer quantum Hall effect in a 2D crystal

$$n = \sum_{bands} \frac{i}{2\pi} \int d^2k \left(\left\langle \frac{\partial u}{\partial k_1} \middle| \frac{\partial u}{\partial k_2} \right\rangle - \left\langle \frac{\partial u}{\partial k_2} \middle| \frac{\partial u}{\partial k_1} \right\rangle \right) \quad \mathcal{F} = \nabla \times \mathcal{A}$$

$$\sigma_{xy} = n \frac{e^2}{L} \qquad \text{TKNN, 1982} \quad \text{``first Chern number''}$$

"Chern number" classifies Bloch bands with broken time-reversal symmetry

Chern I (二

h

Gapless chiral edge states \rightarrow potential use in dissipationless electronic circuits

$$Z_2 = \sum_{n=1}^{occ.} \frac{1}{2\pi} \left(\oint_{\text{Half BZ}} \mathbf{A}_n \cdot d\mathbf{k} - \int_{\text{Half BZ}} dk_x dk_y F_n \right) = 0 \text{ or } 1 \pmod{2} \quad \Longrightarrow \quad \mathbb{T}$$

Topological Flat Bands, Landau Levels

Lattice models with complex hopping parameters (SOC)

Analogues of Landau Levels

Almost flat, topological bands with any Chern number, C= N, possible

Time-reversal broken spontaneously -No need for strong magnetic field

• Partial filling may give rise to Fractional QH state.

A High temperature scale may be achievable

Cold 2D electrons in a strong magnetic field

Flat Landau bands with C=1

Interaction scale set by magnetic length ~ 1 K

PRL 106, 236802; PRB 99, 165141

Search for Materials Candidates

Candidate for RT QAH ?!

OXIDE MATERIALS

Santu Baidya (SNBNCBS-> Duisburg-Essen -> SNU-> Rutgers) Arun Paramekanti (U. Toronto)

Umesh Waghmare (JNCASR, Bangalore)

Interface Engineering of QAH effects ?

Bilayers of Perovskites grown along [111]

Theoretical Prediction:

Combination of buckled honeycomb structure together with SOC can give rise to 2D time reversal Invariant TI.

Xia et al, Nature Commun. 2, 596 (2011)

QAH: MOTIVATION

For practical usage one would like to:

Boost the temperature scale for QAH effect

[Use d-electron systems rather s or p electron based systems.]

Engineer a large topological band gap

Avoid possible dopant or adatom-induced inhomogeneities by considering stoichiometric composition

[Doping TR-invariant TIs with magnetic atoms (Chang et al, Science 2013), Magnetic atoms on graphene (Qiao et al, PRB 2010), heavy atoms with large SOC on magnetic substrates (Garrity, PRL 2013)]

Double Perovskites : A₂BB'O₆

Diversity of Applications:

Spintronics: Sr₂FeMoO₆ (Nature, 1998; PRL 2000)

Multiferroicity: Bi₂NiMnO₆ (JACS, 2005)

Magnetodielectric: La₂NiMnO₆, La₂CoMnO₆ (Adv Mater 2005; PRL 2008; PRB 2008)

Magneto-optic Devices: Sr₂CrWO₆, Sr₂CrReO₆, Sr₂CrOsO₆ (APL, 2008)

<u>3d-4d/5d DPs:</u>

	U (eV)	Ј _н (eV)	$\Delta_{_{\sf CF}}$	ζ->Ζ ⁴ λ _{so} = ζ/2S	
3d	3 – 7	0.8 -0.9	$\Delta \sim J_{_{\rm H}} < U$	0.01 - 0.1	
4d	2 – 3	0.5 – 0.7	Δ ~ U >J _H	0.1 - 0.4	
5d	1 – 2	0.4 – 0.5	∆ > U >J _H	0.4 - 1	

 \geq 3d TM (B) can allow for a high energy scale for magnetism, while the 4d/5d TM (B') can feature strong SOC.

Physical separation of ions hosting magnetism from those hosting strong SOC, avoids the issue related to interplay of correlation effect and SOC at the same site.

> Low energy physics is described by t_{2g} bands suppresses JT (trivial Ins) [Doennig et al, PRB 2016, (LaXO₃)₂/(LaAlO₃)₄ X = Ti-Cu]

Ba₂FeReO₆ (BFRO) : Half-metallic (HM) ferromagnet with transition temperature of 304 K

Ferromagnetism is driven by hybridization driven mechanism as found in Sr₂FeMoO₂

Sarma, Mahadevan, TSD, et al, Phys. Rev. Lett. 85, 2549 (2000)

Effective double exchange type model Hamiltonian

Fe³⁺: 3d⁵: Hund's rule: Large (classical) spin S=5/2 : Site-localized.

Re⁵⁺: 4d²: Mobile electron: gives rise to metallic behavior.

Ferromagnet: S_{total}= 3/2

2-sublattice Kondo lattice Hamiltonian :

Energy scales: t_{FeRe} , $\Delta = \epsilon_{Re} - \epsilon_{Fe}$, J

$$H = \varepsilon_{Fe} \sum_{i \in \mathbb{B}} f_{i\sigma,\alpha}^{\dagger} f_{i\sigma,\alpha}^{\dagger} + \varepsilon_{Re} \sum_{i \in \mathbb{B}} m_{i\sigma,\alpha}^{\dagger} m_{i\sigma,\alpha}^{\dagger} + t_{FM} \sum_{\langle ij \rangle \sigma,\alpha} (f_{i\sigma,\alpha}^{\dagger} m_{j\sigma,\alpha}^{\dagger} + h.c.) + J \sum_{i \in \mathbb{B}} S_i \cdot f_i^{\dagger} \alpha^{\dagger} \sigma_{\alpha\beta} f_{i\beta}$$

Consider quantum wells of a double perovskite (Ba₂FeReO₆) embedded in a wide band gap insulating oxide (BaTiO₃)

Band structure of [111] heterostructure

The (111) bilayer thus can be a quantum anomalous Hall insulator, if t1 and t2 bands can be prevented from spanning a common energy window.

Santu Baidya, Umesh Waghmare, Arun Paramekanti, TSD Phys. Rev. B 92, 161106(R) (2015)

GGA electronic structure:

Band structure in minority spin spin

Half-metallic! Overlayer: Fe²⁺(d⁶)-Re⁶⁺ (d¹) Bulk/QW : Fe³⁺(d⁵)-Re⁵⁺(d²) Gapped at every point except Γ (half semi-metal)

> Charge Redistribution

Quadratic band touching at Γ

Effect of SOC: GGA +SOC electronic structure

Inclusion of SOC gaps out the QBT

Analysis of band structure: 3 band TB model

Fe

3 band model derived from 5d Re t_{2g} bands in reduced C₃ symmetry

Dirac BT at hexagonal BZ corners and QBT at Γ

In-plane inversion symmetry breaking by localized 3d Fe generates in-plane electric field that couples with electric dipoles formed by +/- e_{α}^{π} doublets

Gaps out the Dirac points at BZ corners.

Orbital Rashba-type effect (PRL 2011)

Introduction of SOC term gaps out the QBT.

For **right filling** (d^1 of Re), this leads to QAHI

Strong SOC and trigonal distortion conspire to pin the Re moments to be perpendicular to the plane, leading to high FM T_

DFT: J_{Fe-Fe} (bulk) ~ 1 meV [agrees well INS Phys. Rev. B 87, 184412 (2013)], J_{Fe-Fe} (bilayer) ~ 3.5 meV $H_{Fe-Re} = J_{F-R} \sum_{i \in Fe, \delta} S_i^{z} \sigma_{i+\delta}$

Monte Carlo

(mixed Heisenberg-Ising):

(even slightly higher than bulk!)

1. [111] Bilayers of half-metallic 3d-4d/5d DPs show a strong trigonal distortion, favoring a non-Kramers doublet from t_{2g} states of 4d/5d TM in reduced C_3 symmetry bands in conducting spin channel features **Dirac band** touching at +/- K, and a QBT at Γ .

2. Breaking of in-plane inversion symmetry by 3d TM ions gaps out Dirac points BZ corners (orbital Rashba effect) for appropriate filling of 4d/5d this leads half semi-metal.

3. Strong SOC of 4d/5d TM ions gaps out QBT. Strong SOC and trigonal distortion also conspire to pin 4d/5d moments perpendicular to the plane, maintaining high FM T_c even for bilayer.

Should be general [DPs like $Sr_2FeMoO_6(T_c - 420 \text{ K})$, $Sr_2CrWO_6(T_c - 458 \text{ K})$]

Santu Baidya, Umesh Waghmare, Arun Paramekanti, TSD Phys. Rev. B 94, 155405 (2016)

KAGOME INTERMETALLICS

Santu Baidya (SNBNCBS-> Duisburg-Essen -> SNU-> Rutgers)

Aabhaas Mallik (ICTS, Bangalore)

Subhro Bhattacharya (ICTS, Bangalore)

Binary intermetallic $T_m X_n$ Kagome series (T = Mn/Fe/Co, X = Sn/Ge, m:n = 3:1,3:2,1:1)

Large Anomalous Hall at RT (Nature, 2015) Magnetic Weyl points (Nature Mater, 2017)

Large Anomalous Hall (Sci Adv, 2016)

Search for Flat Bands

CLEAVAGE ENERGY

Cleave Energy = (Energy^{M-term} + Energy^{Sn"term} - Energy^{Bulk}) / (2 * Area of surface of the slab)

Electronic Structure – Bulk vs BL

Electronic Structure – Bulk vs BL

Unconventional Superconductivity

1. Geometric confinement to bilayer, results in (a) **quasi-2D or 2D** electronic structure, (b) survival of **ferromagnetic correlation**, and (c) realization of low-energy bands with suppressed band width – almost **flat bands**.

2. Finite AHC response for a wide range of asymmetry parameter, r. Robust feature of a possible Chern metal phase in bilayer FeSn and allied materials.

3. Destruction of magnetic long-range order due to enhanced quantum fluctuations in low dimension can lead to **exotic superconductivity** (or fractional Chern insulating phase).

Santu Baidya, Aabhaas Vineet Mallik, Subhro Bhattacharjee, TSD, under preparation

GRAPHENE UNDER DEFORMATION

Santu Baidya (SNBNCBS-> Duisburg-Essen -> SNU-> Rutgers)

Surajit Sengupta (TIFR, Hyderabad)

Debankur Das (TIFR, Hyderabad)

C. Sandhya (TIFR, Hyderabad)

Deformation Mechanism in Layered Solids

Phys. Rev. Materials 3, 013602 (2019)

Nano Lett. 2015, 15, 1302-1308

TWO KINDS OF FLUCTUATIONS ARE POSSIBLE

ELECTRONIC STRUCTURE OF PLEATED GRAPHENE

Deformed graphene under strain may be source of magnetic flat Bands with non trivial topological characters.

