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Kitaev model in a nutshell

H=J x ∑
〈ij 〉 , x−bonds
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z

[Kitaev, Ann. Phys. (2006)]

Ising-like model on honeycomb lattice with peculiar Kugel-Khomskii like 
direction-dependent interactions. Integrable!

Quasiparticles: Not spin-1 magnons but 
gapped, localized Z

2
 vortices (π-fluxes) and 

deconfined Majorana fermions. 

The vortices are known to be non-Abelian 
anyons – interesting from the point of view of
topological quantum computing.
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Excitations in the deconfined phase

Express each spin-1/2 particle on the honeycomb lattice as a bilinear
of Majorana fermions: 

 x= i bx c ,  y= i b y c ,  z=i b z c

A gauge constraint also needs to be imposed at every site: D=b x by bz c≡1

H=
i
4∑⟨ij ⟩

Âij c i c j

Âij=2 J αij
û ij , ûij=i bαij

i bαij

j

[H , û ij ]=0 , [ û ij , ûkl ]=0 , û ij
2
=1

Hilbert space divided into sectors labelled by the eigenvalues
of û

ij
 – restricting to any such sector gives model of free Majorana fermions. 

23N/2 possible combinations for the gauge fields, but they do not all correspond
to distinct physical states. Physical objects are the (gauge invariant) fluxes.



  

... Excitations in the deconfined phase

Z
2
 fluxes in terms of gauge fields

(plaquette Wilson loops):
W p= ∏

〈 ij〉 , i∈A , j∈B
uij ,

[Di ,W p]=0Gauge transformations leave
fluxes unchanged:

Hamiltonian non-interacting in each flux sector. N Majorana
fermions  2N/2 degrees of freedom in each sector. 

Ground state manifold corresponds to 
zero flux in all plaquettes (Lieb, 1994): W i=1

The nonzero expectation value of plaquette Wilson loops and their finite
excitation energy are smoking gun signatures of deconfinement.



  

Real Kitaev materials
The alkali iridate Na

2
IrO

3
 and 

α-RuCl
3 
are the two most studied 

Kitaev material candidates. 

d5

X-tal field splitting
(large)

T
2 g

∣ 〉 , ∣ 〉
Spin-orbit coupling (~ 0.5 eV) splits 
T

2g
 levels to give a half-filled Kramers 

doublet. Local Coulomb correlations 
(~ 0.3 eV) are smaller. 

First theoretical proposal: 
G. Jackeli & G. Khaliullin, PRL 
(2009).
Quantum analogue of Kugel-Khomskii 
classical compass models.
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Real Kitaev materials, competing interactions

Presence of competing spin-spin interactions (which are small) nevertheless
drives both the materials to long range magnetic order (zigzag AFM).

[See eg. Y. Singh et al., PRL (2012) F. Ye et al., PRB (2012); 
              S. Choi et al., PRL (2012); X. Liu et al., PRB (2011) 
for the iridate and A. Banerjee et al., Nat. Mater. (2016) for α-RuCl

3
]

Wide separation of zigzag ordering scale (~ 10K) and Curie termperature
(~ -100K) is due to strong frustrating effect of dominant Kitaev interaction.

Ground state not Kitaev QSL but magnetically long-range ordered. However
the materials are quite close in parameter space to the QSL state 
(so-called proximate spin liquid).

Possible to realize Kitaev physics in these materials?
Suppress magnetic order or look at excited states?

 



  

Kitaev physics in real Kitaev materials
Both views are not without merit.

● Excited states? Two scenarios. 

Dominant interaction in the model is Kitaev. Once zigzag order is destroyed 
by, say, raising the temperature, shouldn’t the high energy 
excitations involved be better described as Kitaev quasiparticles? Should
look for deconfinement in excited states.

Counter view: Low-energy excitations of a 3D magnet are spin-1 bosons 
(magnons) and not Majorana fermions. For higher energies, magnon-magnon 
scattering becomes important leading to their decay. Residual Kitaev 
interactions in the magnetically ordered state may further enhance magnon 
scattering, but all within the ambit of interacting spin waves. 
No deconfinement here. 

● Magnetic field tuning

Suppress SDW using magnetic field, possibly reinstating the deconfined
phase. A field tuned Kitaev QSL?



  

Spin-waves: temperature dependence

Nat. Mater. 15, (2016) 

Spin-waves incoherent above zigzag AFM ordering temperature.



  

Field induced Kitaev spin liquid?

Nature 559 (2018)

Quantization of thermal Hall
conductance at intermediate
fields in α-RuCl

3



  

Field-tuned Kitaev QSL: High field torque
magnetometry

Torque measured as a function of field
(as high as 60T) as well as orientation. 

Distinctive nonmonotonous torque
response observed for a wide range
of field orientation at intermediate fields
(25-45 T).

Feature observed only below the zigzag
ordering temperature.

Essentially the same feature is also
observed (but not explained) in α-RuCl

3
.

[I. A. Leahy et al., PRL (2017)]

Nonmonotonous field dependence of 
torque severely constrains parameters
in effective Kitaev-Heisenberg models.

[Our work: S. Das et al., PRB(R) (2019)]



  

Field tuning to Kitaev QSL

Correlation functions decay much faster as a function of separation at higher 
values of the applied field, and the amplitude of their oscillation falls off rapidly 
with increasing fields, in particular above the zigzag ordering scale. 

[S. Das et al., PRB(R) (2019)]

Using the magnetometry constrained models, we computed distance 
dependence of the spin-correlation function for different field values.



Deconfinement in SDW phase

How good are Kitaev quasiparticles in the presence of perturbations
such that the ground state has magnetic SDW order?

Model with FM Kitaev (K>0) and AFM Heisenberg (J>0) interactions:
[J. Chaloupka et al. PRL (2010)]

Phases: 
Kitaev QSL (0 < J/K < 0.12); Stripy AFM (0.12 < J/K < 0.75);
Neel AFM (J/K > 0.75). 

Stripy AFM order peaks at J/K=1/2, a sublattice transformation maps
it to a Heisenberg ferromagnet. 

The regime 0.12 < J/K < 0.5 is the so-called proximate spin liquid (PSL).



  

Scaling analysis for quasiparticle stability

● Calculate “support size” ξ of Kitaev quasiparticle states in Fock space 
of the exact states of J-K model. Inverse Participation Ratio (IPR). 

● Obtain the scaling of support size with number of spins, N. 

If ξ ~ 2N, the Kitaev state is unstable, i.e., not a “good” approximation to 
the exact eigenstate. This many-body wavefn is fully delocalized in the Fock 
space!

If  ξ ~ 2cN, c < 1, the Kitaev state does not decay even though the wavefn
is delocalized in Fock space. [Fractal scaling]

If ξ scales weaker than exponential, then the Kitaev state is stable.
An example of many-body localization.

[B. Altshuler et al., PRL (1997)]



  

Exact diagonalization strategy

To describe the delocalized states, we essentially need an exponentially
large number of exact eigenstates. If all eigenstates are computed, and no
symmetries are exploited, then N=16 is about the best we can do with our 
computing resources.

Lanczos or Davidson algorithms based on shift-inverse strategies do not 
give more than a few tens of states at a time. Besides, it involves inversion 
of singular matrices – numerically unstable. 

Our method: FEAST
● Contour integration based algorithm
● Yields eigenstates in arbitrary, user-specified eigenvalue ranges
● Allows parallelization at multiple levels. 

Unlike Lanczos and Davidson, FEAST is able to handle degeneracies.

  

[A. Kumar, VT, arXiv:1910.00030]



  

FEAST eigensolver

Basic idea – a countour integration based projector

Projects large sparse Hamiltonian to subspace spanned by eigenfunctions
whose corresponding eigenvalues are enclosed by C.

Exact diagonalization of the projected lower-dimensional Hamiltonian yields
the eigenstates enclosed by C. Contour integration performed approximately
by quadratures.

Although FEAST also involves a shift-inverse, the matrix being inverted is
not singular over much of C, except for points very close to the real axis.

[E. Polizzi, Phys. Rev. B (2009)]



  

Decay of a low-lying 2-vortex Kitaev state

Finite size scaling of logarithm of support size vs 1/N. 

Localized, Kitaev quasiparticles good

,ξ ~ 2N, 
decays

ξ ~ 2cN, stable

Kitaev quasiparticles unstable only for J/K > 0.5, deep within the stripy phase.

Y-intercept gives exponent for 
exponentially scaling delocalized 
states.

Localized to fractal transition at 
J/K ~ 0.12, the Kitaev-zigzag 
boundary.



  

Excited states in PSL: Kitaev or magnons?
What’s better: Magnon-like excitations of the stripy phase at J/K=0.5  or Kitaev?

Kitaev 
delocalized

At higher energy densities, both Kitaev
And magnon excitations unstable! So junk
does not imply Kitaev.

At the lowest energy densities, Kitaev is
better than magnon practically everywhere
In PSL even though SDW order is there!



  

MBL phase diagram for Kitaev states
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Low-lying Kitaev states are more robust against Heisenberg perturbation 
than higher ones.

Looking for Kitaev physics at higher energies not recommended. 

Result of finite-size scaling analysys in interaction vs energy density plane.

Kitaev quasiparticles stable 
in localized and fractal scaling 
Phases.

Concomitant SDW order present
in the fractal phase.



  

Finite temperature phase diagram

Broadly agrees with energy density vs interaction phase diagram from MBL
analysis.

Nonzero expectation of plaquette Wilson loop (Kitaev fluxes) and finite
vortex gap suggests deconfinement in PSL phase at low temperatures.
Higher temperatures – more like SDW. Above T

N
 – no magnetic order.



  

Conclusions

We studied the stability of Kitaev quasiparticles in the presence of a 
perturbing Heisenberg interaction as a Fock space localization phenomenon. 

We identified parameter regimes where Kitaev states are localized, fractal or 
delocalized in the Fock space of exact eigenstates. Delocalization implies
quasiparticle instability. 

Our finite temperature calculations show that a vison gap, and a nonzero
plaquette Wilson loop at low temperatures, both characteristic of the 
deconfined Kitaev spin liquid phase, persist far into the neighboring proximate 
spin liquid phase that has a concomitant stripy spin-density wave order. 

Kitaev quasiparticle excitations are stable for low-energy states over a 
signicant parameter range in the stripy phase.
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