Disorder in a classical spin liquid: topological spin glass, cluster algorithm and dynamical Griffiths phase

Arnab Sen Department of Theoretical Physics, Indian Association for the Cultivation of Science, Kolkata Novel Phases of Quantum Matter, ICTS

December 23, 2019

Arnab Sen, IACS, Kolkata Understanding disorder-induced phases in dipolar spin ice

Collaborators:

Tushar Kanti Bose (IACS, Kolkata) Roderich Moessner (MPIPKS, Dresden)

also thanks to

Shivaji Sondhi (Princeton, USA) Vojtech Kaiser (MPI-CBG, Germany) Reference:

Bose, Moessner and Sen, Phys. Rev. B **100**, 064425 (2019), Sen and Moessner, Phys. Rev. Lett. **114**, 247207 (2015), and ongoing work

What is a spin liquid?

Spin solid — e.g. A ferromagnet or an antiferromagnet

- Fig shows dispersion in La₂CuO₄ [from Coldea et. al, PRL 86, 5377 (2000)] –shows existence of magnons
- Spin gas e.g. an uncorrelated paramagnet
- Spin liquid—strongly "correlated" paramagnet

Phases of matter with fractionalized excitations

- These break no symmetries of the underlying Hamiltonian but possess *completely different* excitations from conventional ordered states.
- $H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$ with S = 1/2 spins in 1D
- Excitations not magnons (S = 1) but spinons (S = 1/2)

(Weak) Diagnostics

- No magnetic ordering even well below |⊖_{CW}| unlike unfrustrated magnets
- $T_f \ll T \ll |\Theta_{CW}|$ —spin liquid regime (Ramirez)

Arnab Sen, IACS, Kolkata

Understanding disorder-induced phases in dipolar spin ice

Glassiness in spin liquids?

SPIN DYNAMICS IN THE $S = \frac{1}{3}$ QUANTUM KAGOME

PHYSICAL REVIEW B 83, 180416(R) (2011)

Spin dynamics in the $S = \frac{1}{2}$ quantum kagome compound vesignieite, $Cu_3Ba(VO_5H)_2$

R. H. Colman, ¹. E Bert, ². D. Boldrin, ¹ A. D. Hillier, ³ P. Manuel, ³ P. Mendels,³ and A. S. Wills,^{1,*} ¹Department of Chemistry, University College London, 20 Gondon Street, London, WCHH 0MJ, United Kingdom ²Laboratione de Physique des Solides, UMR CNRS 802, Université Patris-Sud, 94/43 Orono, France ³ISIS Faculty, STFC, Rutherford Appleton Laboratory, Chilton, Ofondaire 0X11 0QX, United Kingdom (Received 20 January 2011; reside annascript received 13 April 2011; Junibiasd 31 May 2011)

We report the study of high-quality samples of the frustrated $S = \frac{1}{2}$ kagome antiferromagnet vesignitie. CubBaVO-HJy, Neuton provder diffraction measurement veidence the scalence of the kagome latice and show no sign of a transition to magnetic long-range order. A kink in the susceptibility below T = 9K is matched to a reduction in paramagnetic-like correlations in the diffraction data and a slowing of the spin dynamical and small forzem moments $\sim 0.1 \mu_B$. We propose that this novel quantum ground state is stabilized by a large Dzyalobihs/N-bydray interaction.

- Exp in Cu₃Ba(VO₅H)₂ which is S = 1/2 kagome antiferromagnet.
- SrCr_{9p}Ga_{12-9p}O₁₉ (SCGO) has a spin-glass transition at $T_g \approx 3.5$ K but persistent spin dynamics down to 100 mK (from μ SR probes)
- No sign of transition to magnetic long range order
- Coexistence of both dynamical (for majority of spins) and small frozen moments, no phase seperation

Spin ice

 $H = rac{J}{3} \sum_{\langle ij \rangle} S_i S_j + Da^3 \sum_{(ij)} \left(rac{\hat{e}_i \cdot \hat{e}_j}{|r_{ij}|^3} - rac{3(\hat{e}_i \cdot \mathbf{r}_{ij})(\hat{e}_j \cdot \mathbf{r}_{ij})}{|r_{ij}|^5}
ight) S_i S_j$

 Experimentally relevant: Dy₂Ti₂O₇, Ho₂Ti₂O₇, Er₂Ti₂O₇, SrCr₈Ga₄O₁₉

Arnab Sen, IACS, Kolkata Understanding disorder-induced phases in dipolar spin ice

ъ

Short and long loops

- $S(T=0) \approx k_B \ln \left(2^N \left(\frac{6}{16}^{N/2}\right)\right) = \frac{N}{2} k_B \ln \left(\frac{3}{2}\right)$ [Pauling, 1935]
- Power-law spin correlations gives rise to pinch points in momentum space [Isakov, Gregor, Moessner, Sondhi (2004), Henley (2005)]

Arnab Sen, IACS, Kolkata

Understanding disorder-induced phases in dipolar spin ice

Spin ice and Dumbbell model

- Represent the "point" dipoles by dumbbells that live on the ends of the dual diamond lattice.
- $H_d = \frac{2\sqrt{2}}{3\sqrt{3}} Da_d \sum_{i>j} \frac{Q_i Q_j}{r_{ij}} + \Delta \sum_i (Q_i/2)^2$ where $Q_i = \eta_i (S_{\boxtimes})_i$ and $\Delta = \frac{2J}{3} + \frac{8}{3} \left(1 + \sqrt{23}\right) D$

(Castelnovo, Moessner and Sondhi (2008))

Pinch points at low T

Arnab Sen, R. Moessner, S. L. Sondhi, Phys. Rev. Lett. 110, 107202 (2013)+ unpublished work with V. Kaiser

Arnab Sen, IACS, Kolkata

Understanding disorder-induced phases in dipolar spin ice

Introducing disorder

E.g., $Dy_{2-x}Y_xTi_2O_7/Ho_{2-x}Y_xTi_2O_7$

- At defective tetrahedra, $S_{\boxtimes} \neq 0$ even at T = 0.
- Cost of bulk $Q = \pm 2$ monopoles (Δ) higher than impurity $Q = \pm 2$ monopoles ($\delta = \frac{4\sqrt{2D}}{3\sqrt{3}}$)
- Impurity monopoles dominate below $T_{\delta} \sim \frac{\delta \Delta}{\ln x}$

ヘロア 人間 アメヨア 人口 ア

Disorder effects

Arnab Sen, R. Moessner, Phys. Rev. Lett. 114, 247207 (2015).

프 🕨 🗉 프

Particle-hole transformation

Spins on a random lattice

- Interaction between the "ghost spins" have two parts:
- $\left(D + \frac{3T}{\sqrt{2\pi}}\right) \left(\frac{a}{r_{ij}}\right)^3 (\hat{e}_i \cdot \hat{e}_j 3(\hat{e}_i \cdot \hat{r}_{ij})(\hat{e}_j \cdot \hat{r}_{ij}))$
- The T dependent renormalization is because of the background spin liquid.

Spin glass of ghost spins

- High temperature : $\langle S_i \rangle = 0$
- Low temperature: $\langle S_i \rangle \neq 0$ but $\frac{1}{N} \sum \langle S_i \rangle = 0$; $q_{EA} = \frac{1}{N} \sum \langle S_i \rangle^2 \neq 0$
- We simulate the dilute system of ghost spins and "confirm a glass transition" [cluster algorithm needed].
- Dense dipoles with random orientations and dilute but collinear dipoles both studied earlier in 3D

Phase diagram of diluted spin ice

ヘロア 人間 アメヨア 人口 ア

э

Below glass transition

- A small frozen moment q_{EA} develops continuously with T below transition
- Sets up local fields. Resulting Zeeman energy ~ D_{\sqrt{qEA}x} attempts to pin bulk spins along the local fields
- Competition with Pauling entropy of $\frac{1}{2} \ln \frac{3}{2}$

ヘロト ヘワト ヘビト ヘビト

- Glass: Freezing of ghost spins below T_c(x). Probes like nonlinear susceptibility, history dependent mag.
- Liquid: Pinch points persist below *T_c*(*x*). Neutron scattering
- Interplay shows up in gradual but complete loss of Pauling entropy as T is lowered below $T_c(x)$. Probe specific heat

Cluster algorithm

FIG. 1. A particular disorder realization for L = 6 and x = 1/32. Colors at different sites in (a) and (b) represent different acceptance ratios of spin flips (R_i) using a conventional single spin-flip Metropolis algorithm. Sites with $(0 < R < 10^{-4})$ are denoted by violet, $(10^{-4} < R < 10^{-3})$ by blue, $(10^{-3} < R < 10^{-2})$ by green, $(10^{-2} < R < 0.1)$ by yellow, (0.1 < R < 0.25) by orange and (0.25 < R < 1) by red. With the chosen cluster parameters $(a_s = 1.3125, b_s = 0.75)$ and $C_L = N/5$), three clusters est C_0, C_1 and C_2 are obtained for this disorder realization. (c) shows the member sites of the clusters that belong to the set C_2 (in violet). (d) shows the additional member sites of the clusters in C_0 that are already not part of C_2 , C_1 (in orange). The figures were generated using the graphics software QMGA [41].

with Tushar Kanti Bose (IACS)

- Problem with single spin flips –rare clusters of spins with $|J_{ij}| \gg |J_{avg}|$ frozen
- Can simulate much larger number of dipoles reliably

< 🗆 > < 🗇 >

Equilibration tests

• $q_{EA}^{\alpha\beta}(\mathbf{k}) = \frac{1}{N} \sum_{i} \mu_{i}^{\alpha(1)} \mu_{i}^{\beta(2)} \exp(i\mathbf{k} \cdot \mathbf{r}_{i})$ where $N = 16L^{3}x$, $\alpha, \beta = x, y, z$

•
$$\chi_{SG}(\mathbf{k}) = N \sum_{\alpha,\beta} [\langle |q_{EA}^{\alpha\beta}|^2 \rangle]$$

Universality (I)

Arnab Sen, IACS, Kolkata Understanding disorder-induced phases in dipolar spin ice

イロト イポト イヨト イヨト

Universality (II)

 Thermal exponent ν = 1.27(8) and anomalous exponent η = 0.228(35) extracted from the finite size scaling analysis

Dynamical Griffiths effects

with Tushar Kanti Bose (IACS)

- Spins in different clusters have different timescales for fluctuations
- Dynamical heterogeneity remain even for $T \sim 4T_c$

Clusters from dynamics

- Spins with slow dynamics (*R* < 0.01) clearly show clustering
- Inter-cluster correlations are also significant between certain clusters

Conclusions: disorder in spin liquids

- Plays many roles: may be a nuisance in some cases but may be really interesting in others
- Topological glass in spin ice
- Identification of glass-like and liquid-like degrees of freedom
- Novel cluster algorithm to simulate this spin glass
- Dynamical Griffiths effects for local dynamics

Thanks for your attention

||▲ 同 ト ▲ 臣 ト ▲ 臣