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What is a spin liquid?

@ Spin solid — e.g. A ferromagnet or an antiferromagnet

k

bl
ft | X |
\I "}g 0 h 05 1
‘V ] ] et | oo

Energy (meV)

350 - E T T 3 of g & '1 ’
LT A kT
N TR

|

|

2 1
Iy (@ (g fu.)

W Avevec! Inr [h k

@ Fig shows dispersion in La,CuQy4 [from Coldea et. al, PRL
86, 5377 (2000)] —shows existence of magnons

@ Spin gas — e.g. an uncorrelated paramagnet
@ Spin liquid—strongly “correlated” paramagnet
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Phases of matter with fractionalized excitations
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Experiments confirm existence
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@ These break no symmetries of the underlying Hamiltonian
but possess completely different excitations from
conventional ordered states.

@ H=J3 i) S §j with S = 1/2 spins in 1D

@ Excitations not magnons (S = 1) but spinons (S = 1/2)
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(Weak) Diagnostics
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What causes glassiness?
Which classes of spin-liquids exist?

@ No magnetic ordering even well below |©¢y| unlike
unfrustrated magnets
o T < T < |©¢cw|—spin liquid regime (Ramirez)
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Glassiness in spin liquids
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Temperature (K)

@ Exp in CuzBa(VOsH), which is S = 1/2 kagome
antiferromagnet.

@ SrCrgpGayz_gp019 (SCGO) has a spin-glass transition at
Tg =~ 3.5 K but persistent spin dynamics down to 100 mK
(from 1SR probes)

@ No sign of transition to magnetic long range order

@ Coexistence of both dynamical (for majority of spins) and
small frozen moments, no phase seperation
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Spin ice
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@ Experimentally relevant: Dy, TioO7, Ho>TioO7, EraTio O,
SFCF8G34019
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Short and long loops

——
-
S -
X A IN_F f
#F N AN <
\ <\ 4T
RS ¥ y ~" "a
- NI
< # / \‘\ #
R W
VNS L9y A
X \ X
2 X \ 7 R
A N #
N\ A J_+
/ o TN 4
V2| \* N
Y X/
| N\ #
12T DA
\C N

o S(T=0)~ ksl (2V(§"*)) = ¥kaln () [Pauling,

1935]
@ Power-law spin correlations gives rise to pinch points in

momentum space [Isakov, Gregor, Moessner, Sondhi
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Spin ice and Dumbbell model

@ Represent the “point” dipoles by dumbbells that live on the
ends of the dual diamond lattice.
@ Hy = 3fDa d i o +A>(Qi/2)? where Q; = 1;(Sw);

Ty

and A =% +§(1+v23)D
(Castelnovo, Moessner and Sondhi (2008))
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Pinch points at low T

Arnab Sen, R. Moessner, S. L. Sondhi, Phys. Rev. Lett. 110, 107202 (2013)+ unpublished work with V. Kaiser

@ HWHM of scattering in nodal dir. (1 + ‘WfT”D)ﬁ and

discontinuity at pinch point 1 — ( 1 >

4v2nD
1+ 537
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Introducing disorder

E.g., DyQ,XYXTiQOﬂHOg,XYXTigO7
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@ At defective tetrahedra, Sy # 0 evenat T = 0.
@ Cost of bulk Q = +£2 monopoles (A) higher than impurity

_ _ 4/2D
Q = +2 monopoles (§ = e )

@ Impurity monopoles dominate below 7; ~

— exp(-NT)
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Disorder effects

Arnab Sen, R. Moessner, Phys. Rev. Lett. 114, 247207 (2015).
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Particle-hole transformation

Holes in regular lattice

/

Spins on a random lattice

@ Interaction between the “ghost spins” have two parts:

3

o (D+2L)(2) (&-&-3(& F)(& 7))

@ The T dependent renormalization is because of the
background spin liquid.
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Spin glass of ghost spins

@ High temperature : (S;) =0

@ Low temperature: (S;) # 0 but ; >°(S;) = 0;
gea = 3 2 (S)2 #0

@ We simulate the dilute system of ghost spins and "confirm
a glass transition" [cluster algorithm needed].

@ Dense dipoles with random orientations and dilute but
collinear dipoles both studied earlier in 3D
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Phase diagram of diluted spin ice

Holes in regular lattice
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Below glass transition

topological Coulomb phase paramagnet
topological
spin glass
frozen fluctuating impurity free
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@ A small frozen moment gega develops continuously with T
below transition

@ Sets up local fields. Resulting Zeeman energy ~ D,/qeax
attempts to pin bulk spins along the local fields

@ Competition with Pauling entropy of % In 3
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topological Coulomb phase paramagnet

topological
spin glass

frozen fluctuating impurity free

bulk monopoles monopoles I

T i, O, T
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@ Glass: Freezing of ghost spins below T(x). Probes like
nonlinear susceptibility, history dependent mag.

@ Liquid: Pinch points persist below T.(x). Neutron
scattering

@ Interplay shows up in gradual but complete loss of Pauling
entropy as T is lowered below T;(x). Probe specific heat
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Cluster algorithm

(a) T = 0.072 ~ 2T, (b) T = 0.047 ~ 1.3T;, (c) Ca

FIG. 1. A particular disorder realization for L = 6 and « = 1/32. Colors at different sites in (a) and (b) represent different
acceptance ratios of spin flips (R;) using a conventional single spin-flip Metropolis algorithm. Sites with (0 < R < 10~%) are
denoted by violet, (107* < R < 107*) by blue, (10™® < R < 1072) by green, (1072 < R < 0.1) by yellow, (0.1 < R < 0.25) by
orange and (0.25 < R < 1) by red. With the chosen cluster parameters (as = 1.3125, bs = 0.75 and C = N/5), three cluster
sets Co, C1 and Cy are obtained for this disorder realization. (c) shows the member sites of the clusters that belong to the set
C; (in violet). (d) shows the additional member sites of the clusters in C; that are already not part of Cy (in green) and the
additional member sites of the clusters in Cy that are already not part of C, C;(in orange). The figures were generated using
the graphics software QMGA [41].

with Tushar Kanti Bose (IACS)

@ Problem with single spin flips —rare clusters of spins with
|Jj| > |Javg| frozen

@ Can simulate much larger number of dipoles reliably
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Equilibration te
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Universality (1)
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@ Thermal exponent v = 1.27(8) and anomalous exponent
n = 0.228(35) extracted from the finite size scaling

analysis
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Dynamical Griffiths effects

with Tushar Kanti Bose (IACS)

@ Spins in different clusters have different timescales for
fluctuations

@ Dynamical heterogeneity remain even for T ~ 4T,
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Clusters from dynamics
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@ Spins with slow dynamics (R < 0.01) clearly show
clustering

@ Inter-cluster correlations are also significant between
certain clusters
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Conclusions: disorder in spin liquids

@ Plays many roles: may be a nuisance in some cases but
may be really interesting in others

@ Topological glass in spin ice
@ Identification of glass-like and liquid-like degrees of
freedom

@ Novel cluster algorithm to simulate this spin glass
@ Dynamical Griffiths effects for local dynamics

Thanks for your attention
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